Europium(III) iodide

From Wikipedia, the free encyclopedia
Europium(III) iodide[1]
Names
IUPAC name
Europium(III) iodide
Other names
Europium triiodide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.941 Edit this at Wikidata
EC Number
  • 244-721-0
  • InChI=1S/Eu.3HI/h;3*1H/q+3;;;/p-3
    Key: OEGMUYNEEQNVBV-UHFFFAOYSA-K
  • [I-].[I-].[I-].[Eu+3]
Properties
EuI
3
Molar mass 532.677 g mol−1
Appearance colourless crystals[2]
Melting point decomposes[1]
Structure[1][3][4]
BiI3
octahedral
Related compounds
Other anions
EuF3, EuCl3, EuBr3
Other cations
SmI3, GdI3
Related compounds
EuI2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3.[1]

Preparation[edit]

Europium metal reacts directly with iodine to form europium(III) iodide:[5]

2 Eu + 3 I2 → 2 EuI3

Hydrated europium(III) iodide can be prepared dissolving europium(III) oxide or europium(III) carbonate in hydroiodic acid:[1][6]

Eu2O3 + 6 HI + 6 H2O → 2 EuI3·9H2O

Europium powder reacts with iodine in THF to form a THF adduct of europium(III) iodide:[7][8]

2 Eu + 3 I2 + 7 THF → [EuI2(THF)5][EuI4(THF)2]

The adduct can be formulated more simply as EuI3(THF)3.5.

Structure[edit]

Europium(III) iodide adopts the bismuth(III) iodide (BiI3) crystal structure type,[3][4] with octahedral coordination of each Eu3+ ion by 6 iodide ions.[1]

Reactivity[edit]

Europium(III) iodide is used as the starting material for two of the main ways of preparing europium(II) iodide:[9]

Reduction with hydrogen gas at 350 °C:

2 EuI3 + H2 → 2 EuI2 + 2 HI

Thermal decomposition[1] at 200 °C, a disproportionation reaction:

2 EuI3 → 2 EuI2 + 2 I2

Europium(III) iodide nonahydrate, EuI3·9H2O, thermally decomposes to europium(II) iodide dihydrate, EuI2·H2O.[10]

References[edit]

  1. ^ a b c d e f g Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1240–1241. ISBN 978-0-08-037941-8.
  2. ^ William M. Haynes, ed. (2014). CRC Handbook of Chemistry and Physics (95th ed.). CRC Press. p. 4-63. ISBN 978-1482208689.
  3. ^ a b Wells, A. F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford University Press. p. 421. ISBN 978-0-19-965763-6.
  4. ^ a b Asprey, L. B.; Keenan, T. K.; Kruse, F. H. (1964). "Preparation and Crystal Data for Lanthanide and Actinide Triiodides". Inorg. Chem. 3 (8): 1137–1141. doi:10.1021/ic50018a015.
  5. ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
  6. ^ Emel'yanov, V. I.; Kuznetsova, L. I.; Abramova, L. V.; Ezhov, A. I. (1997). "Systems Eu2O3-HI-H2O and EuI3-HI-H2O at 25°C". Zh. Neorg. Khim. 42 (8): 1394–1396.
  7. ^ Ortu, Fabrizio (2022). "Rare Earth Starting Materials and Methodologies for Synthetic Chemistry". Chem. Rev. 122: 6040–6116. doi:10.1021/acs.chemrev.1c00842. PMC 9007467.
  8. ^ Gompa, Thaige P.; Rice, Natalie T.; Russo, Dominic R.; Aguirre Quintana, Luis M.; Yik, Brandon J.; Basca, John; La Pierre, Henry S. (2019). "Diethyl ether adducts of trivalent lanthanide iodides". Dalton Trans. 48: 8030–8033. doi:10.1039/C9DT00775J.
  9. ^ Brauer, Georg (1975). Handbook of Preparative Inorganic Chemistry. ISBN 3-432-02328-6.
  10. ^ Jenden, Charles M.; Lyle, Samuel J. (1982). "A Mössbauer spectroscopic study of the lodides of europium". J. Chem. Soc., Dalton Trans. (12): 2409–2414. doi:10.1039/DT9820002409.