User:CD17/sandbox/Water-filtered infrared-A

From Wikipedia, the free encyclopedia

Water-filtered infrared-A (wIRA) is a special form of heat radiation (infrared radiation, directly neighboring to visible light, especially red light, see figures) in the range 780-1400 nm and is used in clinical medicine for prevention and therapy. wIRA combines deep penetration property with only a small thermal load to the skin surface and therefore shows good tolerability and a wide range of clinical indications for the application of wIRA. Technically produced wIRA is derived from the filtering effect of water and water vapour of the atmosphere, causing the heat radiation of the sun in moderate climatic zones typically being perceived to be pleasant.

Natural wIRA[edit]

In moderate climatic zones, different to desert regions, the heat radiation of the sun is typically perceived to be pleasant without stinging or burning, as the heat radiation of the sun is filtered by water and water vapour of the atmosphere, by this decreasing infrared-B and the water absorption bands within infrared-A.[1][2] These wavelengths would otherwise interact with water molecules in the upper layer of the skin and would cause a thermal burden to the skin, resulting in stinging or burning (Figure).[1][3][4][2][5][6][7]

Comparison of the spectra of a radiator with water-filtered infrared-A (wIRA) and of the sun measured under a cloudless sky at noon in June at sea level in the subtropics and of two different halogen radiators without water-filter
Comparison of the spectra of a radiator with water-filtered infrared-A (wIRA) and of the sun measured under a cloudless sky at noon in June at sea level in the subtropics and of two different halogen radiators without water-filter

Technical wIRA[edit]

Technically wIRA is produced by special radiators, in which typically the whole broadband radiation of a 3000 Kelvin halogen bulb is passed through a water-containing cuvette in which the mentioned undesired wavelengths are absorbed or decreased.[1] When using the same irradiation intensity (irradiance) wIRA results in lower skin surface temperature compared to unfiltered infrared radiation.[1][4] When achieving the same skin surface temperature, a wIRA radiator can deliver nearly 4–9-fold infrared-A irradiance compared to unfiltered infrared radiators.[1] Concerning special medically important wavelengths, like 820 nm,[8] it can be even 6–30-fold.[1]

Effects[edit]

The three main thermal effects of wIRA are: wIRA increases tissue temperature, tissue perfusion and tissue oxygen partial pressure markedly.[1][3][4]

The five main clinical effects of wIRA are: wIRA decreases pain, inflammation and hypersecretion, and wIRA improves the immunological status and regeneration.[1]

Clinical applications[edit]

Therefore there is a wide range of clinical indications for the application of wIRA:[1][4][3][7] wIRA can be used to improve the healing of acute[1][5][9] and chronic wounds[1][6][10] (even the undisturbed “normal” healing of the wound can be improved: faster and with less pain).[1][4][11] wIRA can as well be used in skin diseases (e. g. Herpes simplex labialis, Herpes zoster, common warts, sclerodermia, neurodermitis; within a photodynamic therapy in actinic keratosis), and for the improvement of the resorption of topically applied substances to the skin.[7] Other indications[7][1][3] are musculoskeletal disorders (osteoarthritis, arthrosis, spondyloarthritis, lumbago, low back pain, fibromyalgia), regeneration after sports,[12] combination with ergometer training, keeping or increasing temperature in neonatology,[13] therapy of hypothermia; and in combination with radiation therapy[14] or chemotherapy in oncology.[3] In addition wIRA can be used in polyneuropathies and in complex reginal pain syndrome.[7]

Basis of effects[edit]

The effects of wIRA are based on its thermal (referring to the transfer of heat energy) and thermic (temperature dependent) effects as well as on non-thermal and non-thermic effects like direct effects on cells, cell structures and cell substances.[1][4][3][2][15]

Decrease of pain and of inflammation and the improvement of infection defense and of regeneration can be explained both by thermal and non-thermal effects.[3][7] Concerning pain reduction increased tissue perfusion improves elimination of pain mediators and together with increased oxygen partial pressure causes a higher metabolisation of pain mediators and a faster regeneration by a higher rate of energy production (caused by higher temperature, higher perfusion and higher oxygen partial pressure in the tissue).[16][3][2][17]

Decrease of hypersecretion/exudation can be explained by non-thermal effects.[16][3]

Concerning non-thermal effects the energy-rich wavelengths between 780 and 1000 nm[18][19] seem to be the clinically most important wavelengths within wIRA.[16][11][3]

Non-thermal effects include effects on the cytochrome C oxidase in the mitochondria: cytochrome C oxidase is known as universal photo acceptor in the range approximately 600-1000 nm[8][20][21] and can start cascades of reactions with importance even outside energy production.[16][3][8][20]

wIRA in therapeutic irradiances and doses has been shown not only to be harmless to human skin,[22][2][15][23][24][25] but also to have cytoprotective effects.[26][2][15][24][27][28]

References[edit]

  1. ^ a b c d e f g h i j k l m n Hoffmann G, Hartel M, Mercer JB: Heat for wounds – water-filtered infrared-A (wIRA) for wound healing – a review. GMS Ger Med Sci. 2016;14:Doc08. DOI: 10.3205/000235, URN: urn:nbn:de:0183-0002352, http://www.egms.de/static/pdf/journals/gms/2016-14/000235.pdf (PDF full text) and http://www.egms.de/static/en/journals/gms/2016-14/000235.shtml (shtml full text).
  2. ^ a b c d e f Hoffmann G: Principles and working mechanisms of water-filtered infrared-A (wIRA) in relation to wound healing (review). GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc54. http://www.egms.de/pdf/journals/dgkh/2007-2/dgkh000087.pdf (PDF full text) and http://www.egms.de/en/journals/dgkh/2007-2/dgkh000087.shtml (shtml full text).
  3. ^ a b c d e f g h i j k Hoffmann G: Wassergefiltertes Infrarot A in Chirurgie, Dermatologie, Sportmedizin und weiteren Bereichen. (review) In: Krause R, Stange R. Lichttherapie. Berlin, Heidelberg, New York: Springer; 2012. S. 25-54. ISBN 978-3-642-16938-0. As well online: http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/24171 (PDF full text), URN: urn:nbn:de:hebis:30:3-241715
  4. ^ a b c d e f Hoffmann G: Water-filtered infrared-A (wIRA) in acute and chronic wounds (bilingual review). Wassergefiltertes Infrarot A (wIRA) bei akuten und chronischen Wunden (zweisprachige Übersichtsarbeit). GMS Krankenhaushyg Interdiszip. 2009;4(2):Doc12. DOI: 10.3205/dgkh000137 ; URN: urn:nbn:de:0183-dgkh0001373 ; http://www.egms.de/pdf/journals/dgkh/2009-4/dgkh000137.pdf (PDF full text) and http://www.egms.de/en/journals/dgkh/2009-4/dgkh000137.shtml (shtml full text).
  5. ^ a b Hartel M, Illing P, Mercer JB, Lademann J, Daeschlein G, Hoffmann G: Therapy of acute wounds with water-filtered infrared-A (wIRA) (review). GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc53. http://www.egms.de/pdf/journals/dgkh/2007-2/dgkh000086.pdf (PDF full text) and http://www.egms.de/en/journals/dgkh/2007-2/dgkh000086.shtml (shtml full text).
  6. ^ a b von Felbert V, Schumann H, Mercer JB, Strasser W, Daeschlein G, Hoffmann G: Therapy of chronic wounds with water-filtered infrared-A (wIRA) (review). GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc52. http://www.egms.de/pdf/journals/dgkh/2008-2/dgkh000085.pdf (PDF full text) and http://www.egms.de/en/journals/dgkh/2008-2/dgkh000085.shtml (shtml full text).
  7. ^ a b c d e f Hoffmann G: Klinische Anwendungen von wassergefiltertem Infrarot A (wIRA) - eine Übersicht. (review) Phys Med Rehabilitationsmed Kurortmed. 2017;27:265–274. DOI: 10.1055/s-0043-113047, URN: urn:nbn:de:hebis:30:3-450002, as well online freely available: http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/45000 (PDF full text).
  8. ^ a b c Karu TI: Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation (critical review). IUBMB Life, 2010;62(8):607–610. PMID 20681024
  9. ^ Künzli BM, Liebl F, Nuhn P, Schuster T, Friess H, Hartel M: Impact of preoperative local water-filtered infrared A irradiation on postoperative wound healing: a randomized patient- and observer-blinded controlled clinical trial. Ann Surg 2013;258(6):887-894. DOI: 10.1097/SLA.0000000000000235
  10. ^ Schumann H, Calow T, Weckesser S, Müller ML, Hoffmann G: Water-filtered infrared A for the treatment of chronic venous stasis ulcers of the lower legs at home: a randomized controlled blinded study. Br J Dermatol. 2011;165:541–551.
  11. ^ a b Winkel R, Hoffmann G, Hoffmann R: Wassergefiltertes Infrarot A (wIRA) hilft Wunden heilen. (review) Der Chirurg 2014;85:980–992. DOI: 10.1007/s00104-014-2809-8 . Online published: November 12, 2014. As well online freely available: http://link.springer.com/article/10.1007/s00104-014-2809-8 (PDF full text) and http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/35551 (PDF full text).
  12. ^ Hoffmann G: Wassergefiltertes Infrarot A (wIRA) in der Sport- und Präventivmedizin. (review) In: Stephan Völker, Heike Schumacher (Hrsg.): 8. Symposium Licht und Gesundheit. Eine Sondertagung der TU Berlin gemeinsam mit der Deutschen Akademie für Photobiologie und Phototechnologie (DAfP) und der Deutschen Lichttechnischen Gesellschaft (LiTG), 19. und 20. März 2014, Berlin. Universitätsverlag der TU Berlin, 2014. S. 80-105. As well online freely available: http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/35166 (PDF full text) ; http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/4689 (PDF full text of the total volume of the symposium)
  13. ^ Singer D, Schröder M, Harms K: Vorteile der wassergefilterten gegenüber herkömmlicher Infrarot-Strahlung in der Neonatologie. (review) Z Geburtshilfe Neonatol. 2000;204(3):85–92. PMID 10909163
  14. ^ Notter M, Piazena H, Vaupel P: Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperthermia 2017;33:227-36 [Epub ahead of print: 2016 Sep 28] PMID 27618745 DOI: 10.1080/02656736.2016.1235731
  15. ^ a b c Gebbers N, Hirt-Burri N, Scaletta C, Hoffmann G, Applegate LA: Water-filtered infrared-A radiation (wIRA) is not implicated in cellular degeneration of human skin. GMS Ger Med Sci. 2007;5:Doc08. http://www.egms.de/pdf/gms/2007-5/000044.pdf (PDF full text) and http://www.egms.de/en/gms/2007-5/000044.shtml (shtml full text).
  16. ^ a b c d Hoffmann G: Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report (bilingual full text). (Wassergefiltertes Infrarot A (wIRA) überwindet Schluckstörungen und vermehrte Speichelbildung – ein Fallbericht; zweisprachiger Volltext). GMS Ger Med Sci. 2017;15:Doc11. DOI: 10.3205/000252, URN: urn:nbn:de:0183-0002523, http://www.egms.de/pdf/journals/gms/2017-15/000252.pdf (English and German PDF full text) and http://www.egms.de/en/journals/gms/2017-15/000252.shtml (English shtml full text) and http://www.egms.de/de/journals/gms/2017-15/000252.shtml (German shtml full text).
  17. ^ Hartel M, Hoffmann G, Wente MN, Martignoni ME, Büchler MW, Friess H: Randomized clinical trial of the influence of local water-filtered infrared A irradiation on wound healing after abdominal surgery. Br J Surg. 2006;93(8):952–60. DOI: 10.1002/bjs.5429
  18. ^ Albrecht-Buehler G: Cellular infrared detector appears to be contained in the centrosome. Cell Motil Cytoskeleton. 1994;27(3):262–71. DOI: 10.1002/cm.970270307
  19. ^ Ehrlicher A, Betz T, Stuhrmann B, Koch D, Milner V, Raizen MG, Käs J: Guiding neuronal growth with light. Proc Natl Acad Sci USA. 2002;99(25):16024–8. DOI: 10.1073/pnas.252631899
  20. ^ a b Karu TI: Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg. 2010;28(2):159–160. DOI: 10.1089=pho.2010.2789
  21. ^ Karu TI: Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84:1091–1099. DOI: 10.1111 ? j.1751-1097.2008.00394.x
  22. ^ Piazena H, Pittermann W, Müller W, Jung K, Kelleher DK, Herrling T, Meffert P, Uebelhack R, Kietzmann M: Effects of water-filtered infrared-A and of heat on cell death, inflammation, antioxidative potential and of free radical formation in viable skin – First results. J. Photochem. Photobiol. B 2014, 138: 347–354. DOI: 10.1016/j.jphotobiol.2014.06.007 [paywall]
  23. ^ Jung T, Höhn A, Piazena H, Grune T: Effects of water-filtered infrared A irradiation on human fibroblasts. Free Radic Biol Med. 2010;48:153–160. DOI: 10.1016/j.freeradbiomed.2009.10.036
  24. ^ a b Applegate LA, Scaletta C, Panizzon R, Frenk E, Hohlfeld P, Schwarzkopf S: Induction of the putative protective protein ferritin by infrared radiation: implications in skin repair. Int J Mol Med. 2000;5(3):247–51. PMID 10677564
  25. ^ Burri N, Gebbers N, Applegate LA: Chronic infrared-A radiation repair: Implications in cellular senescence and extracellular matrix. In: Pandalai SG, ed. Recent Research Developments in Photochemistry & Photobiology, vol. 7. Trivandrum: Transworld Research Network; 2004. p. 219–31.
  26. ^ Barolet D, Christiaens F, Hamblin MR: Infrared and skin: Friend or foe. J. Photochem. Photobiol. B 2016; 155: 78–85. DOI: 10.1016/j.jphotobiol.2015.12.014
  27. ^ Jantschitsch C, Majewski S, Maeda A, Schwarz T, Schwarz A: Infrared radiation confers resistance to UV-induced apoptosis via reduction of DNA damage and upregulation of antiapoptotic proteins. J Invest Dermatol. 2009 May;129(5):1271-9. Epub 2008 Nov 27.
  28. ^ Piazena H, Kelleher DK: Effects of infrared-A irradiation on skin: discrepancies in published data highlight the need for an exact consideration of physical and photobiological laws and appropriate experimental settings. Photochem Photobiol. 2010;86(3):687–705. DOI: 10.1111/j.1751-1097.2010.00729.x