User:Brynnams/sandbox/MultiGAS

From Wikipedia, the free encyclopedia
A multi-component gas analyzer system is often one of many instruments used to monitor volcanic activity.
Multi-GAS permanent field station. Set-up consists of a Multi-GAS, satellite terminal, 12V batteries, and solar panel control located inside the wooden box. Satellite antenna, solar panels, and multi-GAS intake/outtake located outside of the box.

Bold Text copied over from main article :

A multi-component gas analyzer system (Multi-GAS) is an instrument package used to take real-time high-resolution measurements of volcanic gases.[1] A Multi-GAS package typically includes an infrared spectrometer for CO2, two electrochemical sensors for SO2 and H2S, and pressure–temperature–humidity sensors, all in a weatherproof box.[2][3] The system can be used for individual surveys or set up as permanent stations[1] connected to radio transmitters for transmission of data from remote locations.[4] The instrument package is portable, and its operation and data analysis are simple enough to be conducted by non-specialists.[5]

Multi-GAS instruments have been used to measure volcanic gases at Mount Etna, Stromboli, Vulcano Italy, Villarrica (volcano) Chile, Masaya Volcano Nicaragua, Mount Yasur and Ambrym Vanuatu, Miyake-jima and Mount Asama Japan, Soufrière Hills Montserrat, with permanent installations at Etna and Stromboli.[6]

System Mechanics[edit]

Raw multi-GAS data showing the correlation between CO2 and H2S.

Multi-component gas analyzer systems are used for measuring the major components of volcanic gases. CO2, SO2,H2S, and pressure-temperature-humidity sensors are typically included in a package.[4] Other electrochemical sensors have been successfully incorporated as well, including for H2[7] and HCl[8]. The instruments are packaged in compact, portable, weather-resistant containers allowing for in situ measurements of various types of outgassing terrains.[2] Gas is pumped into the system at a constant flow rate through a silicone tube placed near the location of interest.[2] A data-logger is used to automatically record and convert the voltage values from the sensors into gas composition values.[2][3] While the field use of a multi-GAS is simple, postprocessing of the data can be complex.[3] This is due to factors like instrument drift, and atmospheric or environmental conditions.[3] The system can be used for short term or long term studies. Short term usage can include powering the multi-GAS by a lithium battery and moving it around to desired locations[9][10] or setting up a multi-GAS in a fixed location for a short period of time.[11] Long term studies involve setting up a permanent installment for an extended time.[12] These stations can be set-up with radio transmitters[4] or satellites to send data from distant locations.[13]

Volcano Monitoring[edit]

Monitoring changes in gas composition allows for an understanding of changes occurring in the associated volcanic system. Multi-GAS measurements of real-time CO2/SO2 ratios can allow detection of the pre-eruptive degassing of rising magmas, improving the prediction of volcanic activity.[1] Magmatic or hydrothermal input can be monitored by the temporal variations in H2S/SO2 ratios, advancing the understanding of future eruptive behavior.[13] Other molar ratios and gas species measured by a multi-GAS can provide information for further analysis of volcanic conditions.[3]

Case Studies[edit]

Mount Etna, Italy[edit]

A permanent multi-GAS installment was placed by Mount Etna's summit crater to collect real-time measurements of H2O, CO2, and SO2 over a 2 year period. Data was used to correlate increasing CO2/SO2 ratios with rising magma beneath the edifice and associated volcanic eruptions.[1]

Krýsuvík, Iceland[edit]

A multi-GAS was emplaced in the Krýsuvík geothermal system to collect real-time time-series data of H2O, CO2, SO2, and H2S. Molar ratios were compared with local seismic data, increased gas ratio values followed episodes of increased seismicity. Degassing activity increases after ground movement due to the opening of new paths (e.g. fractures) in the crust for the gas to flow.[4]

Yellowstone, United States[edit]

To help understand caldera dynamics a multi-GAS was used to measure temporal variations in volcanic gases at Yellowstone. Temporal variations coincided with atmospheric and environmental fluctuations. Molar ratios fell within a binary mixing trend.[12]

Nyiragongo, Democratic Republic of the Congo[edit]

CO2/SO2 molar ratios from multi-GAS measurements confirmed a previous observation that an increase in lava lake levels correlates with an increase in the CO2/SO2 ratio.[14]

Deep Earth Carbon Degassing Project (DECADE)[edit]

The DECADE project supported initiatives to set up and expand the use of permanent instrumentation for continuous CO2, and SO2 measurements from volcanoes.[15] Multi-GAS systems have been set up at volcanoes like Villarrica, Chile[16] and Turrialba, Costa Rica.[13]

References[edit]

  1. ^ a b c d Aiuppa, Alessandro; Moretti, Roberto; Federico, Cinzia; Giudice, Gaetano; Gurrieri, Sergio; Liuzzo, Marco; Papale, Paolo; Shinohara, Hiroshi; Valenza, Mariano (2007). "Forecasting Etna eruptions by real-time observation of volcanic gas composition". Geology. 35 (12): 1115. Bibcode:2007Geo....35.1115A. doi:10.1130/G24149A.1.
  2. ^ a b c d Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S. (2005). "Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy)". Geophysical Research Letters. 32 (13): L13309. Bibcode:2005GeoRL..3213309A. doi:10.1029/2005GL023207.
  3. ^ a b c d e Tamburello, Giancarlo (2015). "Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers". Computers & Geosciences. 82: 63–67. doi:10.1016/j.cageo.2015.05.004. ISSN 0098-3004.
  4. ^ a b c d Gudjónsdóttir, Sylvía Rakel; Ilyinskaya, Evgenia; Hreinsdóttir, Sigrún; Bergsson, Baldur; Pfeffer, Melissa Anne; Michalczewska, Karolina; Aiuppa, Alessandro; Óladóttir, Audur Agla (2020). "Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland". Journal of Volcanology and Geothermal Research. 391: 106350. doi:10.1016/j.jvolgeores.2018.04.007. ISSN 0377-0273.
  5. ^ Shinohara, Hiroshi (2005). "A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system". Journal of Volcanology and Geothermal Research. 143 (4): 319–333. doi:10.1016/j.jvolgeores.2004.12.004.
  6. ^ "Volcanic gas monitoring, Ch 6 in Volcanism and Global Environmental Change". January 2015.
  7. ^ Aiuppa, A.; Shinohara, H.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R. (2011). "Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy". Journal of Geophysical Research: Solid Earth. 116 (B10). doi:10.1029/2011JB008461. ISSN 2156-2202.
  8. ^ Roberts, T. J.; Lurton, T.; Giudice, G.; Liuzzo, M.; Aiuppa, A.; Coltelli, M.; Vignelles, D.; Salerno, G.; Couté, B.; Chartier, M.; Baron, R. (2017). "Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna". Bulletin of Volcanology. 79 (5): 36. doi:10.1007/s00445-017-1114-z. ISSN 1432-0819. PMC 6979509. PMID 32025075.
  9. ^ Woitischek, Julia; Woods, Andrew W.; Edmonds, Marie; Oppenheimer, Clive; Aiuppa, Alessandro; Pering, Tom D.; Ilanko, Tehnuka; D'Aleo, Roberto; Garaebiti, Esline (2020). "Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu)". Journal of Volcanology and Geothermal Research. 398: 106869. doi:10.1016/j.jvolgeores.2020.106869. ISSN 0377-0273.
  10. ^ Lages, J.; Chacón, Z.; Burbano, V.; Meza, L.; Arellano, S.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Bitetto, M.; López, C. (2019). "Volcanic Gas Emissions Along the Colombian Arc Segment of the Northern Volcanic Zone (CAS-NVZ): Implications for volcano monitoring and volatile budget of the Andean Volcanic Belt". Geochemistry, Geophysics, Geosystems. 20 (11): 5057–5081. doi:10.1029/2019GC008573. ISSN 1525-2027.
  11. ^ de Moor, J.M.; Aiuppa, A.; Pacheco, J.; Avard, G.; Kern, C.; Liuzzo, M.; Martinez, M.; Giudice, G.; Fischer, T.P. (2016). "Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica". Earth and Planetary Science Letters. 442: 218–227. doi:10.1016/j.epsl.2016.02.056. ISSN 0012-821X.
  12. ^ a b Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B. (2017). "Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach". Journal of Volcanology and Geothermal Research. 347: 312–326. doi:10.1016/j.jvolgeores.2017.10.001. ISSN 0377-0273.
  13. ^ a b c Moor, J. Maarten de; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V. (2016). "Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring". Journal of Geophysical Research: Solid Earth. 121 (8): 5761–5775. doi:10.1002/2016JB013150. ISSN 2169-9356. PMC 5054823. PMID 27774371.{{cite journal}}: CS1 maint: PMC format (link)
  14. ^ Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Lübcke, P.; Arellano, S.; Balagizi, C.; Calabrese, S.; Galle, B.; Tedesco, D. (2017). "Multi-component gas emission measurements of the active lava lake of Nyiragongo, DR Congo". Journal of African Earth Sciences. 134: 856–865. doi:10.1016/j.jafrearsci.2016.07.010. ISSN 1464-343X.
  15. ^ "Fischer, T. P. (2013), DEep CArbon DEgassing: The Deep Carbon Observatory DECADE Initiative, Mineralogical Magazine, 77(5), 1089".
  16. ^ Aiuppa, Alessandro; Bitetto, Marcello; Francofonte, Vincenzo; Velasquez, Gabriela; Parra, Claudia Bucarey; Giudice, Gaetano; Liuzzo, Marco; Moretti, Roberto; Moussallam, Yves; Peters, Nial; Tamburello, Giancarlo (2017). "A CO2-gas precursor to the March 2015 Villarrica volcano eruption". Geochemistry, Geophysics, Geosystems. 18 (6): 2120–2132. doi:10.1002/2017GC006892. ISSN 1525-2027.

See Also[edit]

External Links[edit]

USGS Volcano Hazards Program: Monitoring Gas & Water Methods