Timeline of condensed matter physics

From Wikipedia, the free encyclopedia

This article lists the main historical events in the history of condensed matter physics. This branch of physics focuses on understanding and studying the physical properties and transitions between phases of matter. Condensed matter refers to materials where particles (atoms, molecules, or ions) are closely packed together or under interaction, such as solids and liquids. This field explores a wide range of phenomena, including the electronic, magnetic, thermal, and mechanical properties of matter.

This timeline includes developments in subfields of condensed matter physics such as theoretical crystallography, solid-state physics, soft matter physics, mesoscopic physics, material physics, low-temperature physics, microscopic theories of magnetism in matter and optical properties of matter and metamaterials.

Even if material properties were modeled before 1900, condensed matter topics were considered as part of physics since the development of quantum mechanics and microscopic theories of matter. According to Philip W. Anderson, the term "condensed matter" appeared about 1965.[1]

For history of fluid mechanics, see timeline of fluid and continuum mechanics.

Before quantum mechanics[edit]

Prehistory[edit]

Antiquity[edit]

A piece of magnetite with permanent magnetic properties were noticed already in Ancient Greece

Classical theories before the 19th century[edit]

19th century[edit]

Schema of the classical Hall effect discovered in 1879, where a voltage is created perpendicular to the current in a circuit due to the influence of a magnetic field.

20th century[edit]

Paul Drude, author of the Drude model in 1900. He understood that thermal properties of metals could be understood as a gas of free electrons.

Early 1900s[edit]

Second half of the 20th century[edit]

The liquid helium is in the superfluid phase. Discovered by Pyotr Kapitsa in 1938. First theoretically model with Ginzburg–Landau theory in 1950.
Graphene: a single atomic layer of graphite first produced in 2004.

21st century[edit]

See also[edit]

References[edit]

  1. ^ a b "Philip Anderson". Department of Physics. Princeton University. Retrieved 27 March 2012.
  2. ^ "Hand tool - Neolithic, Stone, Flint | Britannica". www.britannica.com. Retrieved 2023-10-12.
  3. ^ "Bronze Age". HISTORY. 2018-01-02. Retrieved 2023-10-12.
  4. ^ "Iron Age". HISTORY. 2018-01-03. Retrieved 2023-10-12.
  5. ^ a b c Mattis, Daniel C. (2006-03-10). Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods. World Scientific Publishing Company. ISBN 978-981-310-222-4.
  6. ^ Baigrie, Brian (2007), Electricity and Magnetism: A Historical Perspective, Greenwood Publishing Group, p. 1, ISBN 978-0-313-33358-3
  7. ^ Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 9-8102-4471-1
  8. ^ Harvey, George (2006). "A New History of Western Philosophy". Ancient Philosophy. 26 (1): 226–229. doi:10.5840/ancientphil200626156. ISSN 0740-2007.
  9. ^ "Aristotle - Logic, Metaphysics, Ethics | Britannica". www.britannica.com. Retrieved 2023-10-12.
  10. ^ Smith, A. Mark (1982). "Ptolemy's Search for a Law of Refraction: A Case-Study in the Classical Methodology of "Saving the Appearances" and its Limitations". Archive for History of Exact Sciences. 26 (3): 221–240. doi:10.1007/BF00348501. ISSN 0003-9519. JSTOR 41133649. S2CID 117259123.
  11. ^ Weisstein, Eric W. "Kepler Conjecture". mathworld.wolfram.com. Retrieved 2023-10-12.
  12. ^ "Snell's law | Definition, Formula, & Facts | Britannica". www.britannica.com. 2023-09-12. Retrieved 2023-10-12.
  13. ^ "Hooke's law | Description & Equation | Britannica". www.britannica.com. 11 October 2023. Retrieved 2023-10-12.
  14. ^ American Heritage Dictionary (January 2005). The American Heritage Science Dictionary. Houghton Mifflin Harcourt. p. 428. ISBN 978-0-618-45504-1.
  15. ^ "Electromagnetism - Discovery, Uses, Physics | Britannica". www.britannica.com. Retrieved 2024-04-04.
  16. ^ Gerald Küstler (2007). "Diamagnetic Levitation – Historical Milestones". Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg. 52, 3: 265–282.
  17. ^ Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  18. ^ Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  19. ^ Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  20. ^ "Alessandro Volta | Biography, Facts, Battery, & Invention | Britannica". www.britannica.com. 2023-09-25. Retrieved 2023-10-12.
  21. ^ "Atom - Dalton, Bohr, Rutherford | Britannica". www.britannica.com. Retrieved 2023-10-12.
  22. ^ Bain, Ashim Kumar (2019-05-29). Crystal Optics: Properties and Applications. John Wiley & Sons. ISBN 978-3-527-82303-1.
  23. ^ "Dulong–Petit law | Thermodynamics, Heat Capacity, Specific Heat | Britannica". www.britannica.com. Retrieved 2023-10-12.
  24. ^ "Seebeck effect | Thermoelectricity, Temperature Gradients & Heat | Britannica". www.britannica.com. Retrieved 2023-10-12.
  25. ^ Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  26. ^ "Ohm's law | Physics, Electric Current, Voltage | Britannica". www.britannica.com. 2023-09-05. Retrieved 2023-10-12.
  27. ^ "Peltier effect | Definition, Discovery, & Facts | Britannica". www.britannica.com. 2023-09-26. Retrieved 2023-10-12.
  28. ^ Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  29. ^ "James Prescott Joule | Biography & Facts | Britannica". www.britannica.com. 2023-10-07. Retrieved 2023-10-12.
  30. ^ "Faraday effect | Magnetic Field, Electromagnetic Induction & Polarization | Britannica". www.britannica.com. Retrieved 2023-10-12.
  31. ^ Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  32. ^ Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
  33. ^ Franz, R.; Wiedemann, G. (1853). "Ueber die Wärme-Leitungsfähigkeit der Metalle". Annalen der Physik und Chemie (in German). 165 (8): 497–531. Bibcode:1853AnP...165..497F. doi:10.1002/andp.18531650802.
  34. ^ "Thomson effect | Thermal Conduction, Heat Transfer & Joule-Thomson | Britannica". www.britannica.com. Retrieved 2023-10-12.
  35. ^ a b c d e f g Peacock, Kent A. (2008). The Quantum Revolution: A Historical Perspective. Westport, Connecticut: Greenwood Press. pp. 175–183. ISBN 9780313334481.
  36. ^ "Who was James Clerk Maxwell?". clerkmaxwellfoundation.org. Retrieved 2023-10-12.
  37. ^ Encyclopaedia of Physics (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3.
  38. ^ Lorenz, L. (1872). "Bestimmung der Wärmegrade in absolutem Maasse". Annalen der Physik und Chemie (in German). 223 (11): 429–452. Bibcode:1872AnP...223..429L. doi:10.1002/andp.18722231107.
  39. ^ Braun, F. (1874), "Ueber die Stromleitung durch Schwefelmetalle" [On current conduction through metal sulfides], Annalen der Physik und Chemie (in German), 153 (4): 556–563, Bibcode:1875AnP...229..556B, doi:10.1002/andp.18752291207
  40. ^ Kerr, John (1875). "XL. A new relation between electricity and light: Dielectrified media birefringent". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 50 (332): 337–348. doi:10.1080/14786447508641302. ISSN 1941-5982.
  41. ^ "Hall effect | Definition & Facts | Britannica". www.britannica.com. 2023-09-11. Retrieved 2023-10-12.
  42. ^ Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  43. ^ "Piezoelectricity | Piezoelectricity, Acoustic Wave, Ultrasound | Britannica". www.britannica.com. 2023-09-01. Retrieved 2023-10-12.
  44. ^ "Thermionic emission | Thermionic Emission, Vacuum Tubes, Electron Flow | Britannica". www.britannica.com. Retrieved 2023-10-12.
  45. ^ "Photoelectric effect | Definition, Examples, & Applications | Britannica". www.britannica.com. 2023-10-09. Retrieved 2023-10-12.
  46. ^ Mitov, Michel (2014-05-19). "Liquid‐Crystal Science from 1888 to 1922: Building a Revolution". ChemPhysChem. 15 (7): 1245–1250. doi:10.1002/cphc.201301064. ISSN 1439-4235. PMID 24482315.
  47. ^ Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  48. ^ Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  49. ^ Dahl, Per F. (1997). Flash of the Cathode Rays: A History of J J Thomson's Electron. CRC Press. p. 10.
  50. ^ "Milestone 1 : Nature Milestones in Spin". www.nature.com. Retrieved 2018-09-09.
  51. ^ "J.J. Thomson | Biography, Nobel Prize, & Facts | Britannica". www.britannica.com. 2023-08-26. Retrieved 2023-10-12.
  52. ^ Dressel, Martin; Grüner, George (2002-01-17). Electrodynamics of Solids: Optical Properties of Electrons in Matter (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511606168.008. ISBN 978-0-521-59253-6.
  53. ^ See J. Valasek (1920). "Piezoelectric and allied phenomena in Rochelle salt". Physical Review. 15 (6): 537. Bibcode:1920PhRv...15..505.. doi:10.1103/PhysRev.15.505. and J. Valasek (1921). "Piezo-Electric and Allied Phenomena in Rochelle Salt". Physical Review. 17 (4): 475. Bibcode:1921PhRv...17..475V. doi:10.1103/PhysRev.17.475. hdl:11299/179514.
  54. ^ "The Nobel Prize in Chemistry 1953". NobelPrize.org. Retrieved 2023-10-10.
  55. ^ Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion". Mathematical Proceedings of the Cambridge Philosophical Society. 24 (1): 111–132. Bibcode:1928PCPS...24..111H. doi:10.1017/S0305004100011920. ISSN 0305-0041. S2CID 121520012.
  56. ^ Peierls, Rudolf Ernst (1985). Bird of passage: recollections of a physicist. Princeton paperbacks. Princeton, N.J.: Princeton Univ. Press. ISBN 978-0-691-08390-2.
  57. ^ "Plasma - Natural, State, Matter | Britannica". www.britannica.com. Retrieved 2024-03-23.
  58. ^ Rjabinin, J. N. and Schubnikow, L.W. (1935) "Magnetic properties and critical currents of superconducting alloys", Physikalische Zeitschrift der Sowjetunion, vol. 7, no.1, pp. 122–125.
  59. ^ Rjabinin, J. N.; Shubnikow, L. W. (1935). "Magnetic Properties and Critical Currents of Supra-conducting Alloys". Nature. 135 (3415): 581. Bibcode:1935Natur.135..581R. doi:10.1038/135581a0. S2CID 4113840.
  60. ^ Hartree, D. R.; Hartree, W. (May 1935). "Self-consistent field, with exchange, for beryllium". Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences. 150 (869): 9–33. Bibcode:1935RSPSA.150....9H. doi:10.1098/rspa.1935.0085. ISSN 0080-4630. S2CID 120853378.
  61. ^ Vishwanath, Ashvin (2015-09-08). "Where the Weyl Things Are". Physics. 8: 84. arXiv:1502.04684. doi:10.1103/PhysRevX.5.031013.
  62. ^ Landau, L. (1941). Theory of the superfluidity of helium II. Physical Review, 60(4), 356.
  63. ^ Casimir, H. B. G.; Polder, D. (1948-02-15). "The Influence of Retardation on the London–van der Waals Forces". Physical Review. 73 (4): 360–372. Bibcode:1948PhRv...73..360C. doi:10.1103/PhysRev.73.360. ISSN 0031-899X.
  64. ^ Casimir, H. B. G. (1948). "On the attraction between two perfectly conducting plates" (PDF). Proc. Kon. Ned. Akad. Wet. 51: 793. Archived (PDF) from the original on 2013-04-18.
  65. ^ Ehrenberg, W; Siday, RE (1949). "The Refractive Index in Electron Optics and the Principles of Dynamics". Proceedings of the Physical Society B. 62 (1): 8–21. Bibcode:1949PPSB...62....8E. CiteSeerX 10.1.1.205.6343. doi:10.1088/0370-1301/62/1/303.
  66. ^ a b "December 1958: Invention of the Laser". www.aps.org. Retrieved 2023-09-12.
  67. ^ J. C. Slater; G. F. Koster (1954). "Simplified LCAO method for the Periodic Potential Problem". Physical Review. 94 (6): 1498–1524. Bibcode:1954PhRv...94.1498S. doi:10.1103/PhysRev.94.1498.
  68. ^ Geballe, T. H.; Hulm, J. K. (1996). Bernd Theodor Matthias 1918–1990 (PDF). National Academy of Science.
  69. ^ Fröhlich, H. (July 1954). "Electrons in lattice fields". Advances in Physics. 3 (11): 325–361. doi:10.1080/00018735400101213. ISSN 0001-8732.
  70. ^ Dresselhaus, G. (1955-10-15). "Spin–Orbit Coupling Effects in Zinc Blende Structures". Physical Review. 100 (2): 580–586. Bibcode:1955PhRv..100..580D. doi:10.1103/PhysRev.100.580.
  71. ^ Kubo, Ryogo (1957). "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems". J. Phys. Soc. Jpn. 12 (6): 570–586. doi:10.1143/JPSJ.12.570.
  72. ^ Kubo, Ryogo; Yokota, Mario; Nakajima, Sadao (1957). "Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance". J. Phys. Soc. Jpn. 12 (11): 1203–1211. Bibcode:1957JPSJ...12.1203K. doi:10.1143/JPSJ.12.1203.
  73. ^ Rostky, George. "Micromodules: the ultimate package". EE Times. Archived from the original on 2010-01-07. Retrieved 2018-04-23.
  74. ^ E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
  75. ^ Kamenev, Alex (2011). Field theory of non-equilibrium systems. Cambridge: Cambridge University Press. ISBN 9780521760829. OCLC 721888724.
  76. ^ W. A. Little and R. D. Parks, “Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder”, Physical Review Letters 9, 9 (1962), doi:10.1103/PhysRevLett.9.9
  77. ^ Wagner, Herbert; Schollwoeck, Ulrich (2010-10-08). "Mermin-Wagner Theorem". Scholarpedia. 5 (10): 9927. Bibcode:2010SchpJ...5.9927W. doi:10.4249/scholarpedia.9927. ISSN 1941-6016.
  78. ^ Josephson, Paul R. (2010). Lenin's Laureate: Zhores Alferov's Life in Communist Science. MIT Press. ISBN 978-0-262-29150-7.
  79. ^ Slyusar, V.I. (October 6–9, 2009). Metamaterials on antenna solutions (PDF). 7th International Conference on Antenna Theory and Techniques ICATT’09. Lviv, Ukraine. pp. 19–24.
  80. ^ "Soft matter physics". Institute of Physics. Retrieved October 10, 2023.
  81. ^ Mansfield, P; Grannell, P K (1973). "NMR 'diffraction' in solids?". Journal of Physics C: Solid State Physics. 6 (22): L422. Bibcode:1973JPhC....6L.422M. doi:10.1088/0022-3719/6/22/007. S2CID 4992859.
  82. ^ Garroway, A N; Grannell, P K; Mansfield, P (1974). "Image formation in NMR by a selective irradiative process". Journal of Physics C: Solid State Physics. 7 (24): L457. Bibcode:1974JPhC....7L.457G. doi:10.1088/0022-3719/7/24/006. S2CID 4981940.
  83. ^ Mansfield, P.; Maudsley, A. A. (1977). "Medical imaging by NMR". British Journal of Radiology. 50 (591): 188–94. doi:10.1259/0007-1285-50-591-188. PMID 849520. S2CID 26374556.
  84. ^ Mansfield, P (1977). "Multi-planar image formation using NMR spin echoes". Journal of Physics C: Solid State Physics. 10 (3): L55–L58. Bibcode:1977JPhC...10L..55M. doi:10.1088/0022-3719/10/3/004. S2CID 121696469.
  85. ^ Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce (2016-12-23). "Observation of the topological soliton state in the Su–Schrieffer–Heeger model". Nature Communications. 7 (1): 13986. arXiv:1607.02811. Bibcode:2016NatCo...713986M. doi:10.1038/ncomms13986. ISSN 2041-1723. PMC 5196433. PMID 28008924.
  86. ^ Su, W. P.; Schrieffer, J. R.; Heeger, A. J. (1979-06-18). "Solitons in Polyacetylene". Physical Review Letters. 42 (25): 1698–1701. Bibcode:1979PhRvL..42.1698S. doi:10.1103/PhysRevLett.42.1698. ISSN 0031-9007.
  87. ^ Linke, Heiner (2023). "Quantum dots — seeds of nanoscience" (PDF). Swedish Academy of Science.
  88. ^ Lee, P. A.; Stone, A. Douglas (1985-10-07). "Universal Conductance Fluctuations in Metals". Physical Review Letters. 55 (15): 1622–1625. Bibcode:1985PhRvL..55.1622L. doi:10.1103/PhysRevLett.55.1622. ISSN 0031-9007. PMID 10031872.
  89. ^ van Houten, Henk; Beenakker, Carlo (1996-07-01). "Quantum Point Contacts". Physics Today. 49 (7): 22–27. arXiv:cond-mat/0512609. Bibcode:1996PhT....49g..22V. doi:10.1063/1.881503. ISSN 0031-9228. S2CID 56100437.
  90. ^ Schwab, K.; E. A. Henriksen; J. M. Worlock; M. L. Roukes (2000). "Measurement of the quantum of thermal conductance". Nature. 404 (6781): 974–7. Bibcode:2000Natur.404..974S. doi:10.1038/35010065. PMID 10801121. S2CID 4415638.
  91. ^ Castelvecchi, Davide; Sanderson, Katharine (2023-10-03). "Physicists who built ultrafast 'attosecond' lasers win Nobel Prize". Nature. 622 (7982): 225–227. Bibcode:2023Natur.622..225C. doi:10.1038/d41586-023-03047-w. PMID 37789199. S2CID 263621459.
  92. ^ "A New Form of Matter: II, NASA-supported researchers have discovered a weird new phase of matter called fermionic condensates". Science News. Nasa Science. February 12, 2004. Archived from the original on April 2, 2019. Retrieved August 14, 2023.
  93. ^ "Graphene | Properties, Uses & Structure | Britannica". www.britannica.com. Retrieved 2023-10-12.
  94. ^ Kane, C. L.; Mele, E. J. (2005-11-23). "Quantum Spin Hall Effect in Graphene". Physical Review Letters. 95 (22): 226801. arXiv:cond-mat/0411737. doi:10.1103/PhysRevLett.95.226801.
  95. ^ "Scientists Discover How to Use Time Crystals to Power Superconductors | Weizmann USA". American Committee for the Weizmann Institute of Science. 2020-03-02. Retrieved 2023-10-12.
  96. ^ Xu, Su-Yang; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bian, Guang; Zhang, Chenglong; Sankar, Raman; Chang, Guoqing; Yuan, Zhujun; Lee, Chi-Cheng; Huang, Shin-Ming; Zheng, Hao; Ma, Jie; Sanchez, Daniel S.; Wang, BaoKai (2015-08-07). "Discovery of a Weyl fermion semimetal and topological Fermi arcs". Science. 349 (6248): 613–617. arXiv:1502.03807. doi:10.1126/science.aaa9297. ISSN 0036-8075.
  97. ^ "Researchers map tiny twists in "magic-angle" graphene". MIT News | Massachusetts Institute of Technology. 2020-05-08. Retrieved 2023-10-12.