Gas-rich meteorites

From Wikipedia, the free encyclopedia

Gas-rich meteorites are meteorites with high levels of primordial gases, such as helium, neon, argon, krypton, xenon and sometimes other elements.[1] Though these gases are present "in virtually all meteorites,"[2] the Fayetteville meteorite has ~2,000,000 x10−8 ccSTP/g helium,[3] or ~2% helium by volume equivalent. In comparison, background level is a few ppm.

The identification of gas-rich meteorites is based on the presence of light noble gases in large amounts, at levels which cannot be explained without involving an additional component over and above the well-known noble gas components that are present in all meteorites.[3]

History[edit]

William Ramsay was the first to report helium in an iron meteorite, in 1895- not long after its first Earth sample, instead of via Solar observation.[4]

The use of decay products to date meteorites was suggested by Bauer in 1947,[5] and explicitly published by Gerling and Pavlova in 1951.[6] However, this soon resulted in wildly varying ages; it was realized excess helium (including helium-3, rare on Earth) was generated by radiation, too.[7]

The first explicit publication of a gas-rich meteorite was Staroe Pesyanoe (often shortened to Pesyanoe), by Gerling and Levskii in 1956. In family with the later Fayetteville, Pesyanoe's helium level is ~1 million x10−8 ccSTP/g.[8]

Reynolds' publication of a "general Xe anomaly",[9] including 129I decay products and more, touched off the subfield of xenology,[10][11][12][13] continuing to today.[14][15]

The first publication of presolar grains in the 1980s[16] was precipitated by workers searching for noble gases;[17] PSGs were not simply checked via their gas contents.[18][19]

Lines of inquiry[edit]

As unreactive components, they are tracers of processes throughout and predating the Solar System:

Material age can be determined by relative exposure to direct solar and cosmic radiation (by cosmic ray tracks), and indirect creation of resultant nuclides. This includes Ar-Ar dating, I-Xe dating, and U to its various decay products including helium.[20][21][22]

The parent body of a meteorite can be traced in part via comparison of trace elements.[23][24][25] That meteorites are fragments of asteroids, and conditions on such asteroids, were partially deduced from gas evidence.[26][27][28][29]

This includes meteorite pairing, the re-association of meteorites which had split before recovery.[30][31]

Meteorite, parent, and Solar System histories are indicated by tracer elements,[32][33][34] including thermometry, a record of material temperature.[35]

The Lost City Meteor was tracked, allowing an orbit determination back to the asteroid belt. Measurement of relatively short-half-life isotopes in the subsequent Lost City Meteorite then indicate radiation levels in that region of the Solar System.[46]

Gas study[edit]

The field of meteoritic gases follows progress in analytical methods.[47]

The first analyses were basic laboratory chemistry, such as acid dissolution. Various acids were necessary, due to mixtures of various soluble and insoluble minerals. Stepped etching gave higher levels of resolution and discrimination.

Pyrolysis was used, such as on highly acid resistant minerals. These two methods were alternately lauded and derided as "burning the haystack to find the needle."[48][49][50]

Meteoritical studies have tracked the progress of mass spectrometry,[51] a continual and rapid progression[52][53] comparable to or greater than Moore's Law.[54]

More recently, laser extraction[55][56][57]

Meteorites[edit]

[58] This meteoritics-related list is incomplete; you can help by expanding it.

Name Classification Date Provenance Ref
Pantar H5 1938 Fall ,[59][60]
Fayetteville H4 1934 Fall ,[60][61][62]
Gladstone H4 1936 Find [63][64]
Noblesville H4 1991 Fall [65][66]
Tsukuba H5-6 1996 Fall [67][68]
Weston H4 1807 Fall ,[59][60][69]
Willard H3 1934 Find [70][64]
Elm Creek H4 1906 Find [60]
Leighton H5 1907 Fall [60][71]
Djermaia H 1961 Fall [60]
Acfer 111 -H3 1990 Find [72][73]
Ghubara L5 1954 Find [74][75]
St. Mesmin L5 1866 Fall [76][77][69]
(Staroe) Pesyanoe Aubrite 1933 Fall [78][62][79]
Khor Temiki Aubrite 1932 Fall ,[80][69]
Bustee Aubrite 1852 Fall [81][82]
Jodzie Howardite 1877 Fall [83]
Kapoeta Howardite 1942 Fall ,[84] 3,[85]
South Oman -EH 1958 Find [86][87]

Interplanetary dust, like c-chondrites and enstatites, contain hosts for these gases and often measurable gas contents.[88][89][90] So too do a fraction of micrometeorites.[91][92][93]

Gas[edit]

Gas components were first named by descriptors, then letter codes;[94][95] the letter taxonomy "has become increasingly complicated and confusing with time."[96][97]

By Element and Isotope[edit]

Primordial/trapped

36A 132Xe[98]

Solar wind/solar flare

4He 20Ne 36Ar[95]

Cosmic ray/spallogenic

3He 83Kr 126Xe[7][99][100][101]

Radiogenic/fissile

3He 36Ar 40Ar 129Xe 132Xe 134Xe 136Xe 128Xe[102]

By Component[edit]

Planetary

"Planetary" gases (P, Q, P1) are depleted in light elements (He, Ne) compared to solar abundances (see below), or conversely, enriched in Kr, Xe.[103][104][105] This name originally implied an origin, the gas blend observed in terrestrial planets. Scientists wished to stop implying this,[106][105] but the habit was retained.[107][105]

Solar, subsolar

This gas component corresponds to the solar wind.[108][105] Solar flare gas can be distinguished by its greater depth,[109] and a slightly variant composition.[110] "Subsolar" is intermediary between solar and planetary.[111]

E

"Exotic" neon- aberrant 20Ne/22Ne values.[112][113]

H

"Heavy" isotopes of xenon,[114][97] primarily r-process isotopes, plus p-process. Thus, sometimes seen as "HL," anomalous heavy and light isotopes.

G

"Giant", after asymptotic giant branch (while A and B had been taken[112][113]); contains their s-process isotopes.[115]

See also[edit]

References[edit]

  1. ^ Suess, H. E.; Wänke, H.; Wlotzka, F. (1964-05-01). "On the origin of gas-rich meteorites". Geochimica et Cosmochimica Acta. 28 (5): 595–607. Bibcode:1964GeCoA..28..595S. doi:10.1016/0016-7037(64)90080-8.
  2. ^ Swindle, T. (1988). Trapped noble gases in meteorites. Tucson: University of Arizona Press. p. 535. in Meteorites and the early solar system, J. F. Kerridge & M. S. Matthews Eds.
  3. ^ a b Goswami, J.; Lal, D.; Wilkening, L. (1983). "Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system". Space Science Reviews. 37 (1–2): 111–59. Bibcode:1984SSRv...37..111G. doi:10.1007/BF00213959. S2CID 121335431.
  4. ^ Ramsay, W. (4 Jul 1895). "Argon and Helium in Meteoritic Iron". Nature. 52 (1340): 224–25. Bibcode:1895Natur..52..224R. doi:10.1038/052224a0.
  5. ^ Bauer, C. (15 August 1947). "Production of Helium in Meteorites by Cosmic Radiation". Physical Review. 72 (4): 354. Bibcode:1947PhRv...72..354B. doi:10.1103/PhysRev.72.354.
  6. ^ Gerling, E.; Pavlova, T. (1951). "Determination of the geological age of two stony meteorites by the argon method". Doklady Akademii Nauk SSSR. 77: 85–97.
  7. ^ a b Paneth, F.; Reasbeck, P.; Mayne, K. (Aug 1953). "Production by cosmic rays of helium-3 in meteorites". Nature. 172 (4370): 200–01. Bibcode:1953Natur.172..200P. doi:10.1038/172200a0. PMID 13087152. S2CID 4149773.
  8. ^ Gerling, E.; Levskii, L. (1956). "On the origin of the rare gases in stony meteorites". Doklady Akademii Nauk SSSR. 110: 750.
  9. ^ Reynolds, J. (15 May 1963). "Xenology". Journal of Geophysical Research. 68 (10): 2939–56. Bibcode:1963JGR....68.2939R. doi:10.1029/JZ068i010p02939.
  10. ^ Fleischer, R.; Price, P.; Walker, R. (1975). "6.5 Study of Nucleosynthesis and the Early History of the Solar System by Extinct Isotopes". Nuclear Tracks in Solids: Principles and Applications. University of California Press. ISBN 9780520026650.
  11. ^ Hintenberger, H. (Jul 1972). "Xenon in irdischer und in extraterrestrischer Materie (Xenologie)". Naturwissenschaften. 59 (7): 285–91. Bibcode:1972NW.....59..285H. doi:10.1007/BF00593352. S2CID 33097923.
  12. ^ Kuroda, P. (Jan 1976). "Xenology: The enigma of xenon in carbonaceous chondrite". Geochemical Journal. 10 (3): 121–36. Bibcode:1976GeocJ..10..121K. doi:10.2343/geochemj.10.121.
  13. ^ Staudacher, T. Allègre C. (Oct 1982). "Terrestrial xenology". Earth and Planetary Science Letters. 60 (3): 389–406. Bibcode:1982E&PSL..60..389S. doi:10.1016/0012-821X(82)90075-9.
  14. ^ Tolstikhin, I.; Marty, B.; Porcelli, D.; Hofmann, A. (Jul 2014). "Evolution of volatile species in the earth's mantle: A view from xenology". Geochimica et Cosmochimica Acta. 136: 229–46. Bibcode:2014GeCoA.136..229T. doi:10.1016/j.gca.2013.08.034.
  15. ^ Diehl, R.; Hartmann, D.; Prantzos, N. (2018). "2.2.4 Extinct Radioactivity and Immediate Pre-Solar Nucleosynthesis". Astrophysics with Radioactive Isotopes (2nd ed.). Springer. ISBN 978-3319919294.
  16. ^ Lewis, R.; Ming, T.; Wacker, J.; Anders, E.; Steel, E. (Mar 1987). "Interstellar diamonds in meteorites". Nature. 326 (6109): 160–62. Bibcode:1987Natur.326..160L. doi:10.1038/326160a0. S2CID 4324489.
  17. ^ Zinner, E.; Ming, T.; Anders, E. (24 Dec 1987). "Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite". Nature. 330 (6150): 730–32. Bibcode:1987Natur.330..730Z. doi:10.1038/330730a0. S2CID 4306270.
  18. ^ Ott, U. (Jul 1993). "Interstellar grains in meteorites". Nature. 364 (6432): 25–33. Bibcode:1993Natur.364...25O. doi:10.1038/364025a0. S2CID 4271084.
  19. ^ a b Anders, E. (1988). Circumstellar material in meteorites: noble gases, carbon and nitrogen. Tucson: University of Arizona Press. p. 927. ISBN 978-0816510634. in Meteorites and the Early Solar System, Kerridge, J., Matthews, M. eds.
  20. ^ Martin, G. (1953). "Recent studies of iron meteorites. IV The origin of meteoritic helium and the age of meteorites". Geochimica et Cosmochimica Acta. 3 (6): 288–309. Bibcode:1953GeCoA...3..288M. doi:10.1016/0016-7037(53)90037-4.
  21. ^ Gerling, E.; Pavlova, T. (1951). "Determination of the geological age of two stony meteorites by the argon method". Doklady Akademii Nauk SSSR. 77: 85–97.
  22. ^ Wasserburg, G.; Hayden, R. (1955). "Age of meteorites by the Ar40-K40 method" (PDF). Physical Review. 97 (1): 86–87. Bibcode:1955PhRv...97...86W. doi:10.1103/PhysRev.97.86.
  23. ^ Wieler, R.; Baur, H.; Pedroni, A.; Signer, P.; Pellas, P. (1989). "Exposure history of the regolithic chondrite Fayetteville: I. Solar-gas-rich matrix". Geochimica et Cosmochimica Acta. 53 (6): 1441–59. Bibcode:1989GeCoA..53.1441W. doi:10.1016/0016-7037(89)90076-8.
  24. ^ Nier, A.; Schlutter, D. (1990). "H and N isotopes in stratospheric particles". Meteoritics. 25: 263–67. doi:10.1111/j.1945-5100.1990.tb00710.x.
  25. ^ Bogard, D. (1995). "Impact ages of meteorites: A synthesis". Meteoritics. 30 (3): 244–68. Bibcode:1995Metic..30..244B. doi:10.1111/j.1945-5100.1995.tb01124.x.
  26. ^ Lal, D. Rajan R. (19 Jul 1969). "Observations on Space Irradiation of Individual Crystals of Gas-rich Meteorites". Nature. 223 (5203): 269–71. Bibcode:1969Natur.223..269L. doi:10.1038/223269a0. S2CID 4207264.
  27. ^ MacDougall, Rajan R. Price P. (11 Jan 1974). "Gas-rich meteorites: possible evidence for origin on a regolith". Science. 183 (4120): 73–4. Bibcode:1974Sci...183...73M. doi:10.1126/science.183.4120.73. PMID 17743149. S2CID 20720348.
  28. ^ Anders, E. (1978). "Most Stony Meteorites Come from the Asteroid Belt". In Morrison, D.; Wells, W. (eds.). Asteroids: An Exploration Assessment, NASA Conference Publication 2053. NASA. p. 57.
  29. ^ Obase, T.; Nakashima, D. (12 Jul 2019). "Past Solar Wind Fluxes at the Locations of Gas-Rich Meteorite Parent Bodies Based on Noble Gas Studies: Implications to the Past Heliocentric Distances". Proc. 82nd Annual Meeting of the Meteoritical Society. 82 (2157): 6270. Bibcode:2019LPICo2157.6270O.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Schultz, L.; Kruse, H. "He, Ne, and Ar in meteorites. A detailed compilation". Meteoritics. 24: 155–72. doi:10.1111/j.1945-5100.1989.tb00958.x.
  31. ^ Bogard, D; Johnson, P (Aug 1983). "Martian Gases in an Antarctic Meteorite?". Science. 221 (4611): 651–54. Bibcode:1983Sci...221..651B. doi:10.1126/science.221.4611.651. PMID 17787734. S2CID 32043880.
  32. ^ Padia, J.; Rao, M. (1989). "Neon isotope studies of Fayetteville and Kapoeta meteorites and clues to ancient solar activity". Geochimica et Cosmochimica Acta. 53 (6): 1461–67. Bibcode:1989GeCoA..53.1461P. doi:10.1016/0016-7037(89)90078-1.
  33. ^ Marti, K. (5 Dec 1969). "Solar-type xenon: a new isotopic composition of xenon in the pesyanoe meteorite". Science. 166 (3910): 1263–5. Bibcode:1969Sci...166.1263M. doi:10.1126/science.166.3910.1263. PMID 17759945. S2CID 20726612.
  34. ^ Begemann, F. (1972). "Ar37/Ar39 activity ratios in meteorites and the spatial consistency of the cosmic radiation". Journal of Geophysical Research. 77: 3650–59. doi:10.1029/JB077i020p03650.
  35. ^ Okazaki, R.; Nagao, K. (Apr 2017). "Primordial and cosmogenic noble gases in the Sutter's Mill CM chondrite". Meteoritics & Planetary Science. 52 (4): 669–89. Bibcode:2017M&PS...52..669O. doi:10.1111/maps.12819.
  36. ^ a b Alaerts, L.; Lewis, R.; Matsuda, J; Anders, E. (1980). "Isotopic anomalies of noble gases in meteorites and their origins-Presolar components in the Murchison C2 chondrite". Geochimica et Cosmochimica Acta. 44 (2): 189–209. Bibcode:1980GeCoA..44..189A. doi:10.1016/0016-7037(80)90131-3.
  37. ^ Clayton, D (Oct 1979). "Supernovae and the origin of the solar system". Space Science Reviews. 24 (2): 147–226. Bibcode:1979SSRv...24..147C. doi:10.1007/BF00167709. S2CID 121531146.
  38. ^ Pepin, R.; Eddy, J.; Merrill, R., eds. (1980). The Ancient Sun: Fossil record in the Earth, Moon and Meteorites. New York: Pergamon Press. ISBN 978-0080263243.
  39. ^ Pepin, R. O.; McKay, D. S. (1986). Workshop On Past And Present Solar Radiation: The Record in Meteoritic and Lunar Regolith Material. Houston: Lunar And Planetary Institute.
  40. ^ Sonett, C.; Giampapa, M.; Mathews, M., eds. (1991). The Sun in Time. Tucson: University of Arizona Press. ISBN 978-0-8165-1297-3.
  41. ^ Koop, L.; Heck, P. (2018). "High early solar activity inferred from helium and neon excesses in the oldest meteorite inclusions". Nature Astronomy. 2 (9): 709–13. Bibcode:2018NatAs...2..709K. doi:10.1038/s41550-018-0527-8. S2CID 139581040.
  42. ^ Heber, V.; Baur, H.; Wieler, R. (Nov 2001). Solar Krypton and Xenon in gas-rich meteorites: New insights into a unique archive of solar wind. American Institute of Physics. p. 387. ISBN 0-7354-0042-3. in Solar and Galactic Composition: A Joint SOHO/ACE Workshop, R. F. Wimmer-Schweingruber, ed.
  43. ^ Pepin, R. Palma R. Schlutter D. (Feb 2010). "Noble gases in interplanetary dust particles, II: Excess helium-3 in cluster particles and modeling constraints on interplanetary dust particle exposures to cosmic-ray irradiation". Meteoritics & Planetary Science. 36 (11): 1515–34. doi:10.1111/j.1945-5100.2001.tb01843.x.
  44. ^ Wieler, R.; Pedroni, A.; Leya, I. (4 Feb 2010). "Cosmogenic neon in mineral separates from Kapoeta: No evidence for an irradiation of its parent body regolith by an early active Sun". Meteoritics & Planetary Science. 35 (2): 251–57. doi:10.1111/j.1945-5100.2000.tb01774.x.
  45. ^ Smith, T.; Cook, D.; Merchel, S.; Pavetich, S.; Rugel, G.; Scharf, A.; Leya, I. (Dec 2019). "The constancy of galactic cosmic rays as recorded by cosmogenic nuclides in iron meteorites". Meteoritics & Planetary Science. 54 (12): 2951–76. Bibcode:2019M&PS...54.2951S. doi:10.1111/maps.13417. hdl:20.500.11850/382444.
  46. ^ Begemann, F. (10 Jul 1972). "Argon 37/argon 39 activity ratios in meteorites and the spatial constancy of the cosmic radiation". Journal of Geophysical Research. 77 (20): 3650–59. Bibcode:1972JGR....77.3650B. doi:10.1029/JB077i020p03650.
  47. ^ Begemann, F. (1996). "Noble gases and meteorites". Meteoritics & Planetary Science. 31 (2): 171–76. doi:10.1111/j.1945-5100.1996.tb02012.x.
  48. ^ Wieler, R.; Busemann, H.; Franchi, I. (2006). Trapping and Modification Processes of Noble Gases and Nitrogen in Meteorites and Their Parent Bodies. Tucson: University of Arizona Press. p. 499. ISBN 9780816525621. in Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds.
  49. ^ Manavi. "Stardust from meteorites". ANSMET, The Antarctic Search for Meteorites. Case Western Reserve University. Retrieved 15 Dec 2019.
  50. ^ Dauphas, N.; Schauble, E. (2016). "Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies". Annu. Rev. Earth Planet. Sci. 44: 709–83. Bibcode:2016AREPS..44..709D. doi:10.1146/annurev-earth-060115-012157. S2CID 128830601.
  51. ^ Merrill, G. (Jun 1909). "The composition of stony meteorites compared with that of terrestrial igneous rocks, and considered with reference to their efficacy in world-making". American Journal of Science. 27 (162): 469–74. Bibcode:1909AmJS...27..469M. doi:10.2475/ajs.s4-27.162.469.
  52. ^ Gilmour, J.; Lyon, I.; Johnston, W.; Turner, G. (Mar 1994). "RELAX: An ultrasensitive; resonance ionization mass spectrometer for xenon". Review of Scientific Instruments. 65 (3): 617–25. Bibcode:1994RScI...65..617G. doi:10.1063/1.1145127.
  53. ^ Baur, H. (1999). "A noble gas mass spectrometer compressor source with two orders of magnitude improvement in sensitivity". EOS, Trans. Am. Geophys. Union. 46: F1118.
  54. ^ Thompson, Bruce (15 Nov 2012). "Driving High Sensitivity in Biomolecular MS". Genetic Engineering & Biotechnology News. 32 (20).
  55. ^ Takaoka, N.; Nagao, K.; Miura, Y. (1991). Noble Gas Study of Unique Meteorite Yamato-74063 by Laser Extraction. NIPR (Japan). p. 92. in 16th Symposium on Antarctic Meteorites, Jun 5-7 1991
  56. ^ Osawa, T.; Nagao, K.; Nakamura, T.; Takaoka, N. (2000). "Noble gas measurement in individual micrometeorites using laser gas-extraction system". Antarctic Meteorite Research. 13: 322–41. Bibcode:2000AMR....13..322O.
  57. ^ Avice, G.; Bekaert, D.; Chennaoui Aoudjehane, H.; Marty, B. (9 Feb 2018). "Noble gases and nitrogen in Tissint reveal the composition of the Mars atmosphere". Geochemical Perspectives Letters. 6: 11–16. doi:10.7185/geochemlet.1802.
  58. ^ Padia, J.; Rao, M. (Jun 1989). "Neon isotope studies of Fayetteville and Kapoeta meteorites and clues to ancient solar activity". Geochimica et Cosmochimica Acta. 53 (6): 1461–67. Bibcode:1989GeCoA..53.1461P. doi:10.1016/0016-7037(89)90078-1.
  59. ^ a b Eugster, O. (2003). "Cosmic-ray Exposure Ages of Meteorites and Lunar Rocks and Their Significance". Geochemistry. 63 (1): 3–30. Bibcode:2003ChEG...63....3E. doi:10.1078/0009-2819-00021.
  60. ^ a b c d e f Graf, Thomas; Marti, Kurt (1995). "Collisional history of H chondrites". Journal of Geophysical Research. 100 (E10): 21247. Bibcode:1995JGR...10021247G. doi:10.1029/95JE01903.
  61. ^ Padia, J., Rao, M. "Neon isotope studies of Fayetteville and Kapoeta meteorites and clues to ancient solar activity ". (Jun 1989). Geochimica et Cosmochimica Acta. 53(6): 1461-67.
  62. ^ a b Mueller, O., Zahringer, J. "Chemische Unterschiede bei urdelgashaltigen Steinmeteoriten". (1966). Earth Planet. Sci. Lett. (1): 25.
  63. ^ Miura, Y.; Nagao, K. (1992). "Noble gases and 81Kr-Kr exposure ages of non-Antarctic ordinary chondrites: An attempt to measure terrestrial ages of Antarctic meteorites" (PDF). In Yanai, K. (ed.). Proceedings of the NIPR Symposium, No. 5. Sixteenth Symposium on Antarctic Meteorites, held June 5–7, 1991, at the National Institute of Polar Research, Tokyo. National Institute of Polar Research (Japan). pp. 298–309. Bibcode:1992AMR.....5..298M. Retrieved 2020-02-04.
  64. ^ a b Osawa, T.; Nagao, K. (2006). "Noble gases in solar-gas-rich and solar-gas-free polymict breccias". Antarctic Meteorite Research. 19: 58–78. Bibcode:2006AMR....19...58T.
  65. ^ Lipschutz, M.; Wolf, S.; Vogt, S. (Sep 1993). "Consortium study of the unusual H chondrite regolith breccia, Noblesville". Meteoritics. 28 (4): 528–537. Bibcode:1993Metic..28..528L. doi:10.1111/j.1945-5100.1993.tb00276.x.
  66. ^ Murer, C.; Baur, H.; Signer, P.; Wieler, R. (Mar 1997). "Helium, neon, and argon abundances in the solar wind: In vacuo etching of meteoritic iron-nickel". Geochimica et Cosmochimica Acta. 61 (6): 1303–14. Bibcode:1997GeCoA..61.1303M. doi:10.1016/S0016-7037(97)83772-6.
  67. ^ Jabeen, I.; Kusakabe, M.; Nagao, K.; Nakamura, T. (1998). "Tsukuba meteorite: H chondrite, or a new parent body?". Meteoritics & Planetary Science. 33: 77.
  68. ^ Nakashima, D.; Nakamura, T.; Sekiya, M.; Takaoka, N. (2002). "Cosmic-ray exposure age and heliocentric distance of the parent body of H chondrites Y75029 and Tsukuba". Antarctic Meteorite Research. 15: 97–113.
  69. ^ a b c Schultz, L., Kruse, H. "Helium, Neon, and Argon in Meteorites: A Data Compilation". Max-Planck-Institut fur Chemie, Mainz. (1983).
  70. ^ Inada, A.; Nagao, K. (2003). "Noble gases and cosmic-ray x host of Willard (b) H-chondrite: A breccia with". Meteoritics & Planetary Science. 38: 5170.
  71. ^ Quijano-Rico, M.; Wanke, H. (1969). Millman, P. M. (ed.). Meteorite Research: Proceedings of a Symposium on Meteorite Research Held in Vienna, Austria, 7–13 August 1968. Springer Science & Business Media. p. 134. ISBN 978-90-277-0132-9.
  72. ^ Romstedt, J.; Pedroni, A. (Jul 1993). "Irradiation History of ACFER 111, Inferred from Nuclear Tracks and Rare Gases". Meteoritics. 28 (3): 424. Bibcode:1993Metic..28R.424R.
  73. ^ Pedroni, A.; Begemann, F. (1994). "On unfractionated solar noble gas in the H3-6 meteorite Acfer 111". Meteoritics. 29 (5): 632. doi:10.1111/j.1945-5100.1994.tb00776.x.
  74. ^ Levskii, L. (1979). "Rare gases in carbonaceous chondrites". Meteoritika. 38: 27–36. Bibcode:1979Metik..38...27L.
  75. ^ Meier, M.; Schmitz, B.; Alwmark, C. (2014). "He and Ne in individual chromite grains from the regolith breccia Ghubara (L5):Exploring the history of the L chondrite parent body regolith". Meteoritics & Planetary Science. 49 (4): 576–94. Bibcode:2014M&PS...49..576M. doi:10.1111/maps.12275.
  76. ^ Heymann, D.; Mazor, E. (1 Oct 1966). "St. Mesmin, A gas-rich amphoteric chondrite". Journal of Geophysical Research. 71 (19): 4695–97. Bibcode:1966JGR....71.4695H. doi:10.1029/JZ071i019p04695.
  77. ^ Schultz, L.; Signer, P. (Dec 1974). "Rare gasses in the St. Mesmin chondrite". Meteoritics. 9: 402–03. Bibcode:1974Metic...9..402S.
  78. ^ Gerling, E.; Levskii, L. (1956). "On the origin of the rare gases in stony meteorites". Doklady Akademii Nauk SSSR. 110: 750.
  79. ^ Murty, S.; Marti, K. (Sep 1990). "Search for solar-type nitrogen in the gas-rich Pesyanoe meteorite". Meteoritics. 25 (3): 227–30. Bibcode:1990Metic..25..227M. doi:10.1111/j.1945-5100.1990.tb01000.x.
  80. ^ Ashworth, J.; Barber, D. (1975). "Electron petrography of shock effects in a gas-rich enstatite-achondrite". Contributions to Mineralogy and Petrology. 49 (2): 149–62. Bibcode:1975CoMP...49..149A. doi:10.1007/BF00373858. S2CID 129098349.
  81. ^ Poupeau, G.; Berdot, J. (Apr 1972). "Irradiations ancienne et recente des aubrites". Earth and Planetary Science Letters. 14 (3): 381–396. Bibcode:1972E&PSL..14..381P. doi:10.1016/0012-821X(72)90139-2.
  82. ^ Poupeau, G.; Kirsten, T.; Steinbrunn, F.; Storzer, D. (Dec 1974). "The records of solar wind and solar flares in aubrites". Earth and Planetary Science Letters. 24 (2): 229–41. Bibcode:1974E&PSL..24..229P. doi:10.1016/0012-821X(74)90101-0.
  83. ^ Mazor, E.; Anders, E. (Sep 1967). "Primordial gases in the Jodzie howardite and the origin of gas-rich meteorites". Geochimica et Cosmochimica Acta. 31 (9): 1441–56. Bibcode:1967GeCoA..31.1441M. doi:10.1016/0016-7037(67)90020-8.
  84. ^ Pellas, P.; Poupeau, G.; Lorin, J.; Reeves, H.; Audouze, J. (1969). "Primitive Low-energy Particle Irradiation of Meteoritic Crystals". Nature. 223 (5203): 272–74. Bibcode:1969Natur.223..272P. doi:10.1038/223272a0. S2CID 4173768.
  85. ^ Swindle, T.; Garrison, D.; Goswami, J.; Hohenberg, C.; Nichols, R.; Olinger, C. (1990). "Noble gases in the howardites Bholghati and Kapoeta". Geochimica et Cosmochimica Acta. 54 (8): 2183–94. Bibcode:1990GeCoA..54.2183S. doi:10.1016/0016-7037(90)90044-L.
  86. ^ Crabb, J.; Anders, E. (1981). "Noble gases in E-chondrites". Geochimica et Cosmochimica Acta. 45 (12): 2443–64. Bibcode:1981GeCoA..45.2443C. doi:10.1016/0016-7037(81)90097-1.
  87. ^ Pepin, R.; Becker, R.; Rider, P. (1995). "Xenon and krypton isotopes in extraterrestrial regolith soils and in the solar wind". Geochimica et Cosmochimica Acta. 59 (23): 4997–5022. Bibcode:1995GeCoA..59.4997P. doi:10.1016/0016-7037(96)80916-1.
  88. ^ Merrihue, C. (1964). "Rare Gas Evidence For Cosmic Dust In Modern Pacific Red Clay". Ann. N.Y. Acad. Sci. 119 (1): 351–67. doi:10.1111/j.1749-6632.1965.tb47445.x.
  89. ^ Tilles, D. (21 May 1965). "Atmospheric noble gases;; Solar-Wind bombardment of extraterrestrial dust as a possible source mechanism". Science. 148 (3673): 1085–88. Bibcode:1965Sci...148.1085T. doi:10.1126/science.148.3673.1085. PMID 17820112. S2CID 8871489.
  90. ^ Nier, A.; Schlutter, D. (Dec 1990). "Helium and neon isotopes in stratospheric particles". Meteoritics. 25 (4): 263–67. Bibcode:1990Metic..25..263N. doi:10.1111/j.1945-5100.1990.tb00710.x.
  91. ^ Olinger, C.; Maurette, M.; Walker, R.; Hohenberg, C. (1990). "Neon measurements of individual Greenland sediment particles: proof of an extraterrestrial origin". Earth Planet. Sci. Lett. 100: 77–93. doi:10.1016/0012-821X(90)90177-Y.
  92. ^ Osawa, T.; Nakamura, T.; Nagao, K. (2003). "Noble gas isotopes and mineral assemblages of Antarctic micrometeorites collected at the meteorite ice field around the Yamato mountains". Meteoritics & Planetary Science. 38 (11): 1627–40. Bibcode:2003M&PS...38.1627O. doi:10.1111/j.1945-5100.2003.tb00005.x.
  93. ^ Heck, P.; Schmitz, B.; Baur, H.; Wieler, R. (March 2008). "Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L-chondrite parent body breakup event". Meteoritics & Planetary Science. 43 (3): 517–28. Bibcode:2008M&PS...43..517H. doi:10.1111/j.1945-5100.2008.tb00669.x.
  94. ^ Pepin, R. (1967). "Trapped neon in meteorites". Earth and Planetary Science Letters. 12 (1): 13–18. Bibcode:1967E&PSL...2...13P. doi:10.1016/0012-821X(67)90165-3.
  95. ^ a b Nakamura, T.; Nagao, K. Metzler; K.; Takaoka, N. (Jan 1999). "Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies". Geochimica et Cosmochimica Acta. 63 (2): 257–73. Bibcode:1999GeCoA..63..257N. doi:10.1016/S0016-7037(98)00278-6.
  96. ^ Sabu, D.; Manuel, O. (1980). "The neon alphabet game" (PDF). Proceedings, 11th Lunar and Planetary Science Conference, Houston, TX, March 17–21, 1980. Vol. 2. New York: Pergamon Press. pp. 879–899. Bibcode:1980LPSC...11..879S. S2CID 13798722. Archived from the original (PDF) on 2019-02-23. Retrieved 2020-02-04.
  97. ^ a b Huss, G.; Lewis, R. (Jan 1995). "Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type". Geochimica et Cosmochimica Acta. 59 (1): 115–60. Bibcode:1995GeCoA..59..115H. doi:10.1016/0016-7037(94)00376-W.
  98. ^ Pepin, R.; Signer, P. (16 Jul 1965). "Primordial Rare Gases in Meteorites". Science. 149 (3681): 253–65. Bibcode:1965Sci...149..253P. doi:10.1126/science.149.3681.253. PMID 17838092.
  99. ^ Eberhardt, P.; Eugster, O.; Geiss, J.; Marti, K. (1965). "Rare Gas Measurements in 30 Stone Meteorites". Z. Naturforsch. 21: 414–26. Bibcode:1966ZNatA..21..414E.
  100. ^ Vogt, S.; Herzog, G.; Reedy, R. (Aug 1990). "Cosmogenic nuclides in extraterrestrial materials". Reviews of Geophysics. 28 (3): 253–75. Bibcode:1990RvGeo..28..253V. doi:10.1029/RG028i003p00253.
  101. ^ Leya, I; Lange, H.; Neumann, S.; Wieler, R.; Michel, R. (Mar 2000). "The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles". Meteoritics & Planetary Science. 35 (2): 259–86. Bibcode:2000M&PS...35..259L. doi:10.1111/j.1945-5100.2000.tb01775.x.
  102. ^ Fish, R.; Goles, G. (6 Oct 1962). "Ambient Xenon: A Key To The History Of Meteorites". Nature. 196 (4849): 27–31. Bibcode:1962Natur.196...27F. doi:10.1038/196027a0. S2CID 4147736.
  103. ^ Merrihue, C.; Pepin, R.; Reynolds, J. (1962). "Rare Gases in the Chondrite Pantar". Journal of Geophysical Research. 67 (5): 2017–21. Bibcode:1962JGR....67.2017M. doi:10.1029/JZ067i005p02017.
  104. ^ Zahnle, K. (1993). Planetary Noble Gases. Tucson: University of Arizona Press. p. 1305. ISBN 0816513341. in Protostars and Planets III, Levy, E.; Lunine, Jonathan I.; eds.
  105. ^ a b c d Huss, G.; Lewis, R.; hemkin, S (1996). "The "normal planetary" noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history". Geochimica et Cosmochimica Acta. 60 (17): 3311–40. Bibcode:1996GeCoA..60.3311H. doi:10.1016/0016-7037(96)00168-8.
  106. ^ Heymann, D. (1970). The Noble Gases. New York: Gordon and Breach. p. 29. ISBN 9780677149509. in Handbook of Elemental Abundances in Meteorites, Mason, B. ed.
  107. ^ Lewis, R.; Srinavasan, B.; Anders, E. (1975). "Host phase of a strange xenon component in Allende meteorite". Science. 190 (4221): 1251–62. doi:10.1126/science.190.4221.1251. S2CID 94192045.
  108. ^ Mazor, E.; Heymann, D.; Anders, E. (1970). "Noble gases in carbonaceous chondrites". Geochimica et Cosmochimica Acta. 34 (7): 781–824. Bibcode:1970GeCoA..34..781M. doi:10.1016/0016-7037(70)90031-1.
  109. ^ Murer, C.; Bauer, H.; Wieler, R. (1995). "Light noble gas abundances in the solar wind trapped by chondritic material". Meteoritics. 30: 554.
  110. ^ Bochsler, P.; Kallenbach, R. (Sep 1994). "Fractionation of N Isotopes in SEPs". Meteoritics. 29: 653–58. doi:10.1111/j.1945-5100.1994.tb00780.x.
  111. ^ Busemann, H.; Eugster, O.; Baur, H.; Wieler, R. (Mar 2003). "The ingredients of the "Subsolar" noble gas component" (PDF). 34th Annual Lunar and Planetary Science Conference, March 17–21, 2003, League City, Texas. Abstract no. 1674. Bibcode:2003LPI....34.1674B. Retrieved 2020-02-04.
  112. ^ a b Pepin, R. (Jan 1967). "Trapped neon in meteorites". Earth and Planetary Science Letters. 2 (1): 13–18. Bibcode:1967E&PSL...2...13P. doi:10.1016/0012-821X(67)90165-3.
  113. ^ a b Black, D.; Pepin, R. (1969). "Trapped neon in meteorites — II". Earth and Planetary Science Letters. 6 (5): 395–405. Bibcode:1969E&PSL...6..395B. doi:10.1016/0012-821X(69)90190-3.
  114. ^ Reynolds, J.; Turner, G. (Aug 1964). "Rare gases in the chondrite Renazzo". Journal of Geophysical Research. 69 (15): 3263–81. Bibcode:1964JGR....69.3263R. doi:10.1029/JZ069i015p03263.
  115. ^ Gallino, R.; Bussot, M.; Picchiot, G.; Raiteri, C. (22 Nov 1990). "On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains". Nature. 348 (6299): 298–302. Bibcode:1990Natur.348..298G. doi:10.1038/348298a0. S2CID 4251175.
  • Handbook of Elemental Abundances in Meteorites, Mason, B. ed. 1970 Gordon and Breach New York ISBN 9780677149509 Chapter 2: The Noble Gases, Heymann, D., p. 29
  • Mazor, E. Heymann, D. Anders, E. Noble gases in carbonaceous chondrites. 1970 Geochimica et Cosmochimica Acta vol. 34 p. 781-824
  • Goswami, J. Lal, D. Wilkening, L. Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system 1983 Space Science Reviews vol. 37 p. 111-59
  • The Sun in Time, Sonett, C. Giampapa, M. Mathews, M. eds. 1991 University of Arizona Press Tucson ISBN 978-0-8165-1297-3
  • Ozima, M. Podosek, F. Noble Gases in Geochemistry, 2nd ed. 2002 Cambridge University Press Cambridge ISBN 9780521803663
  • Noble Gases in Geochemistry and Cosmochemistry, Porcelli, D. Ballentine, C. Wieler, R. eds. 2002 Mineralogical Society of America Washington, DC
  • Treatise on Geochemistry vol.1 2003 1.14 Noble Gases, Podosek, F. p. 381-403
  • Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds. 2006 University of Arizona Press Tucson ISBN 9780816525621
  • Geochemical Perspectives Jul 2013 vol. 2 issue 2 Special issue, Noble Gas Constraints on the Origin and Evolution of Earth's Volatiles ISSN 2223-7755