Portal:Tropical cyclones

From Wikipedia, the free encyclopedia

The Tropical Cyclones Portal

Hurricane Isabel in 2003 as seen from the International Space Station
Hurricane Isabel

A tropical cyclone is a storm system characterized by a large low-pressure center, a closed low-level circulation and a spiral arrangement of numerous thunderstorms that produce strong winds and heavy rainfall. Tropical cyclones feed on the heat released when moist air rises, resulting in condensation of water vapor contained in the moist air. They are fueled by a different heat mechanism than other cyclonic windstorms such as Nor'easters, European windstorms and polar lows, leading to their classification as "warm core" storm systems. Most tropical cyclones originate in the doldrums, approximately ten degrees from the Equator.

The term "tropical" refers to both the geographic origin of these systems, which form almost exclusively in tropical regions of the globe, as well as to their formation in maritime tropical air masses. The term "cyclone" refers to such storms' cyclonic nature, with anticlockwise rotation in the Northern Hemisphere and clockwise rotation in the Southern Hemisphere. Depending on its location and intensity, a tropical cyclone may be referred to by names such as "hurricane", "typhoon", "tropical storm", "cyclonic storm", "tropical depression" or simply "cyclone".

Types of cyclone: 1. A "Typhoon" is a tropical cyclone located in the North-west Pacific Ocean which has the most cyclonic activity and storms occur year-round. 2. A "Hurricane" is also a tropical cyclone located at the North Atlantic Ocean or North-east Pacific Ocean which have an average storm activity and storms typically form between May 15 and November 30. 3. A "Cyclone" is a tropical cyclone that occurs in the South Pacific and Indian Oceans.

Florence at peak intensity south of Bermuda on September 11

Hurricane Florence was a powerful and long-lived Cape Verde hurricane that caused catastrophic damage in the Carolinas in September 2018, primarily as a result of freshwater flooding due to torrential rain. The sixth named storm, third hurricane, and the first major hurricane of the 2018 Atlantic hurricane season, Florence originated from a strong tropical wave that emerged off the west coast of Africa on August 30, 2018. The wave steadily organized, and strengthened into a tropical depression on the next day near Cape Verde. Progressing along a steady west-northwest trajectory, the system gradually strengthened, acquiring tropical storm strength on September 1. An unexpected bout of rapid intensification ensued on September 4–5, culminating with Florence becoming a Category 4 major hurricane on the Saffir–Simpson scale (SSHWS), with estimated maximum sustained winds of 130 mph (215 km/h). Strong wind shear then led to rapid weakening, and Florence weakened to tropical storm strength on September 7. Shifting steering currents led to a westward turn into a more suitable environment; as a result, Florence reintensified to hurricane strength on September 9 and major hurricane status by the following day. Florence reached peak intensity on September 11, with 1-minute winds of 150 mph (240 km/h) and a minimum central pressure of 937 mbar (27.7 inHg). An unexpected eyewall replacement cycle and decreasing oceanic heat content caused a steady weakening trend; however, the storm grew in size at the same time. Early on September 14, Florence made landfall in the United States just south of Wrightsville Beach, North Carolina as a Category 1 hurricane, and weakened further as it slowly moved inland under the influence of weak steering currents. Florence degenerated into a post-tropical cyclone over West Virginia on September 17 and was absorbed by another frontal storm two days later.

Early in the storm's history, the system brought squalls to the Cape Verde islands, resulting in minor landslides and flooding; however, overall effects remained negligible. With the threat of a major impact in the Southeastern and Mid-Atlantic United States becoming evident by September 7, the governors of North Carolina, South Carolina, Virginia, Georgia, and Maryland, and the mayor of Washington, D.C. declared a state of emergency. On September 10 and 11, the states of North Carolina, South Carolina, and Virginia issued mandatory evacuation orders for some of their coastal communities, predicting that emergency personnel would be unable to reach people there once the storm arrived. Though Florence made landfall as a greatly weakened Category 1 hurricane, winds associated with the tropical cyclone were strong enough to uproot trees and power lines, causing extensive power outages across the Carolinas. Furthermore, due to the slow motion of the storm, heavy rain fell throughout the Carolinas for several days. Coupled with a powerful storm surge, the rainfall caused widespread flooding along a long stretch of the North Carolina coast, from New Bern to Wilmington. Inland flooding from Florence inundated cities such as Fayetteville, Smithfield, Lumberton, Durham, and Chapel Hill. Most major roads and highways in the area experienced flooding, with large stretches of I-40, I-95, and US Route 70 remaining impassable for days after the storm's passage. Wilmington was cut off entirely from the rest of the mainland by the flooding. The storm also spawned tornadoes in several places along its path, including an EF2 tornado that killed one person in Virginia. Many places received record-breaking rainfall, with Florence setting maximum rainfall records from a tropical cyclone in both of the Carolinas. Overall, the storm caused $24.23 billion in damage, mostly in the Carolinas, and 54 deaths. (Full article...)
List of selected named cyclones

Selected article - show another

A storm surge, storm flood, tidal surge, or storm tide is a coastal flood or tsunami-like phenomenon of rising water commonly associated with low-pressure weather systems, such as cyclones. It is measured as the rise in water level above the normal tidal level, and does not include waves.

The main meteorological factor contributing to a storm surge is high-speed wind pushing water towards the coast over a long fetch. Other factors affecting storm surge severity include the shallowness and orientation of the water body in the storm path, the timing of tides, and the atmospheric pressure drop due to the storm. There is a suggestion that climate change may be increasing the hazard of storm surges. (Full article...)
List of selected articles

Selected image - show another

Visual comparison of Hurricane Floyd and Hurricane Andrew. The two storms are at similar positions and nearly identical intensities (933 mbar), but Hurricane Floyd is remarkably larger. In 1999 at the time of Floyd, it was believed that the wind speeds of the hurricanes were nearly identical as well, at 120 knots (140 mph, 220 km/h). In 2002, however, hurricane re-analysis concluded that Andrew had stronger winds than had previously been thought, and in the picture the storm winds are actually close to 145 knots (165 mph, 270 km/h).


Selected season - show another

The 2019 Atlantic hurricane season was the fourth consecutive above-average and damaging season dating back to 2016. The season featured eighteen named storms, however, many storms were weak and short-lived, especially towards the end of the season. Six of those named storms achieved hurricane status, while three intensified into major hurricanes. Two storms became Category 5 hurricanes, marking the fourth consecutive season with at least one Category 5 hurricane, the third consecutive season to feature at least one storm making landfall at Category 5 intensity, and the seventh on record to have multiple tropical cyclones reaching Category 5 strength. The season officially began on June 1 and ended on November 30. These dates historically describe the period each year when most tropical cyclones form in the Atlantic basin and are adopted by convention. However, tropical cyclogenesis is possible at any time of the year, as demonstrated by the formation of Subtropical Storm Andrea on May 20, making this the fifth consecutive year in which a tropical or subtropical cyclone developed outside of the official season.

The season's first hurricane, Barry, formed in mid-July in the northern Gulf of Mexico and struck Louisiana. Barry caused two deaths and produced flooding in Arkansas, Alabama, Louisiana, and Mississippi, with damage totaling about $600 million (2019 USD). Hurricane Dorian, the most intense tropical cyclone of the season, proved to be the costliest natural disaster in the history of the Bahamas, becoming the strongest hurricane to strike the country. Overall, Dorian caused about $5.1 billion in damage and 84 fatalities, mostly in the Bahamas. The 2019 season was the record fourth consecutive season to feature at least one Category 5 hurricane. Tropical Storm Fernand left flooding in Mexico, with approximately $11.3 million in damage and one death. Hurricane Humberto produced extensive damage in Bermuda, totaling at least $25 million. (Full article...)
List of selected seasons

Related portals

Currently active tropical cyclones

Italicized basins are unofficial.

North Atlantic (2024)
No active systems
East and Central Pacific (2024)
No active systems
West Pacific (2024)
Tropical Storm Ewiniar (Aghon)
North Indian Ocean (2024)
Cyclone Remal
Mediterranean (2023–24)
No active systems
South-West Indian Ocean (2023–24)
No active systems
Australian region (2023–24)
No active systems
South Pacific (2023–24)
No active systems
South Atlantic (2023–24)
No active systems

Last updated: 18:32, 26 May 2024 (UTC)

Tropical cyclone anniversaries

May 28

May 29

May 30


Did you know…



General images - load new batch

The following are images from various tropical cyclone-related articles on Wikipedia.

Featured list - show another

This is a featured list, which represents some of the best list articles on English Wikipedia.

Satellite image of the most recent Atlantic off-season system, an unnamed subtropical storm on January 16, 2023

An off-season Atlantic hurricane is a tropical or subtropical cyclone that existed in the Atlantic basin outside of the official Atlantic hurricane season. The National Oceanic and Atmospheric Administration currently defines the season as occurring between June 1 and November 30 each calendar year, which is when 97% of all Atlantic tropical cyclones occur. Peak activity is known to be between August and October. Between 1938, when the United States Weather Bureau began issuing tropical cyclone warnings as a collaborative observation network for cities along the U.S. coastline, and 1963, the season was defined between June 15 and November 15. In 1964, the season was extended to begin on June 1 and end on November 30, which remains the official length of the season.

, there have been 92 off-season cyclones recorded in the official Atlantic hurricane database, which dates back to 1851. In addition, six earlier such storms have been documented, but are not part of the database. The first off-season storm in the database was an 1865 storm that developed in the Caribbean Sea; an earlier documented 1863 hurricane is not part of the database. The most recent off-season system was an unnamed January subtropical storm in 2023. (Full article...)
List of Featured lists

Topics

Subcategories

Category puzzle
Category puzzle
Select [►] to view subcategories

Related WikiProjects

WikiProject Tropical cyclones is the central point of coordination for Wikipedia's coverage of tropical cyclones. Feel free to help!

WikiProject Weather is the main center point of coordination for Wikipedia's coverage of meteorology in general, and the parent project of WikiProject Tropical cyclones. Three other branches of WikiProject Weather in particular share significant overlaps with WikiProject Tropical cyclones:

  • The Non-tropical storms task force coordinates most of Wikipedia's coverage on extratropical cyclones, which tropical cyclones often transition into near the end of their lifespan.
  • The Floods task force takes on the scope of flooding events all over the world, with rainfall from tropical cyclones a significant factor in many of them.
  • WikiProject Severe weather documents the effects of extreme weather such as tornadoes, which landfalling tropical cyclones can produce.

Things you can do


Here are some tasks awaiting attention:


Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals