Portal:Climate change

From Wikipedia, the free encyclopedia
(Redirected from Portal:Global warming)

The Climate Change Portal

Surface air temperature change over the past 50 years.[1]

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices add to greenhouse gases, notably carbon dioxide and methane. Greenhouse gases absorb some of the heat that the Earth radiates after it warms from sunlight. Larger amounts of these gases trap more heat in Earth's lower atmosphere, causing global warming.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimise future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be a result. The World Health Organization (WHO) calls climate change the greatest threat to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for a small share of global emissions, yet have the least ability to adapt and are most vulnerable to climate change.

Many climate change impacts have been felt in recent years, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points, such as melting all of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.7 °C (4.9 °F) by the end of the century. Limiting warming to 1.5 °C will require halving emissions by 2030 and achieving net-zero emissions by 2050.

Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind, solar, hydro, and nuclear power. Cleanly generated electricity can replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Carbon can also be removed from the atmosphere, for instance by increasing forest cover and farming with methods that capture carbon in soil. (Full article...)

Between 1901 and 2018, average global sea level rose by 15–25 cm (6–10 in), an average of 1–2 mm (0.039–0.079 in) per year. This rate accelerated to 4.62 mm (0.182 in)/yr for the decade 2013–2022. Climate change due to human activities is the main cause. Between 1993 and 2018, thermal expansion of water accounted for 42% of sea level rise. Melting temperate glaciers accounted for 21%, while polar glaciers in Greenland accounted for 15% and those in Antarctica for 8%. Sea level rise lags behind changes in the Earth's temperature, and sea level rise will therefore continue to accelerate between now and 2050 in response to warming that has already happened. What happens after that depends on human greenhouse gas emissions. Sea level rise would slow down between 2050 and 2100 if there are very deep cuts in emissions. It could then reach slightly over 30 cm (1 ft) from now by 2100. With high emissions it would accelerate. It could rise by 1.01 m (3+13 ft) or even 1.6 m (5+13 ft) by then. In the long run, sea level rise would amount to 2–3 m (7–10 ft) over the next 2000 years if warming amounts to 1.5 °C (2.7 °F). It would be 19–22 metres (62–72 ft) if warming peaks at 5 °C (9.0 °F).

Rising seas affect every coastal and island population on Earth. This can be through flooding, higher storm surges, king tides, and tsunamis. There are many knock-on effects. They lead to loss of coastal ecosystems like mangroves. Crop yields may reduce because of increasing salt levels in irrigation water. Damage to ports disrupts sea trade. The sea level rise projected by 2050 will expose places currently inhabited by tens of millions of people to annual flooding. Without a sharp reduction in greenhouse gas emissions, this may increase to hundreds of millions in the latter decades of the century. Areas not directly exposed to rising sea levels could be vulnerable to large-scale migration and economic disruption.

Local factors like tidal range or land subsidence will greatly affect the severity of impacts. There is also the varying resilience and adaptive capacity of ecosystems and countries which will result in more or less pronounced impacts. For instance, sea level rise in the United States (particularly along the US East Coast) is already higher than the global average. It is likely to be 2 to 3 times greater than the global average by the end of the century. Yet, of the 20 countries with the greatest exposure to sea level rise, 12 are in Asia. Eight of them collectively account for 70% of the global population exposed to sea level rise and land subsidence. These are Bangladesh, China, India, Indonesia, Japan, the Philippines, Thailand and Vietnam. The greatest impact on human populations in the near term will occur in the low-lying Caribbean and Pacific islands. Sea level rise will make many of them uninhabitable later this century. (Full article...)
List of selected articles

Selected picture – show another

Credit: NASA
This image shows the Arctic as observed by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) aboard NASA’s Aqua satellite on September 16, 2007. The image denotes a record sea ice minimum in the Arctic.

WikiProjects

In the news

Selected biography – show another

Walter Heinrich Munk (October 19, 1917 – February 8, 2019) was an American physical oceanographer. He was one of the first scientists to bring statistical methods to the analysis of oceanographic data. Munk worked on a wide range of topics, including surface waves, geophysical implications of variations in the Earth's rotation, tides, internal waves, deep-ocean drilling into the sea floor, acoustical measurements of ocean properties, sea level rise, and climate change. His work won awards including the National Medal of Science, the Kyoto Prize, and induction to the French Legion of Honour.

Munk's career began before the outbreak of World War II and ended nearly 80 years later with his death in 2019. The war interrupted his doctoral studies at the Scripps Institution of Oceanography (Scripps), and led to his participation in U.S. military research efforts. Munk and his doctoral advisor Harald Sverdrup developed methods for forecasting wave conditions which were used in support of beach landings in all theaters of the war. He was involved with oceanographic programs during the atomic bomb tests in Bikini Atoll.

Beginning in 1975, Munk and Carl Wunsch developed ocean acoustic tomography to exploit the ease with which sound travels in the ocean and use acoustical signals for measurement of broad-scale temperature and current. In a 1991 experiment, Munk and his collaborators investigated the ability of underwater sound to propagate from the Southern Indian Ocean across all ocean basins, with the aim of measuring global ocean temperature. The experiment was criticized by environmental groups, who expected that the loud acoustic signals would adversely affect marine life. Munk continued to develop and advocate for acoustical measurements of the ocean throughout his career. (Full article...)

General images

The following are images from various climate-related articles on Wikipedia.

Did you know – show another

... that global warming is cited as the main reason why southern England is becoming suitable for wine production and that it has similar soils and latitude to the Champagne region of France?

(Pictured left: A vineyard in Wyken, a suburb of Coventry, England)

Other "Did you know" facts... Read more...

Related portals

Selected panorama – show another

the Arctic temperature trend between August 1981 and July 2009. Due to global warming, which is exacerbated at the Arctic, there's a significant warming over this 28 year period.

Topics


Categories

Web resources

Things to do

Wikimedia

References

  1. ^ "GISS Surface Temperature Analysis (v4)". NASA. Retrieved 12 January 2024.
  2. ^ Bhargav, Vishal (2021-10-11). "Climate Change Is Making India's Monsoon More Erratic". www.indiaspend.com. Retrieved 2021-10-11.
  3. ^ Tiwari, Dr Pushp Raj; Conversation, The. "Nobel prize: Why climate modellers deserved the physics award – they've been proved right again and again". phys.org. Retrieved 2021-10-11.
Discover Wikipedia using portals

Purge server cache