Portal:Climate change

From Wikipedia, the free encyclopedia
(Redirected from P:GW)

The Climate Change Portal

Surface air temperature change over the past 50 years.[1]

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is primarily caused by humans burning fossil fuels since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices add to greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels unseen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimise future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be a result. The World Health Organization (WHO) calls climate change the greatest threat to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for a small share of global emissions, yet have the least ability to adapt and are most vulnerable to climate change.

Many climate change impacts have been felt in recent years, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points, such as melting all of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.7 °C (4.9 °F) by the end of the century. Limiting warming to 1.5 °C will require halving emissions by 2030 and achieving net-zero emissions by 2050.

Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind, solar, hydro, and nuclear power. Cleanly generated electricity can replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Carbon can also be removed from the atmosphere, for instance by increasing forest cover and farming with methods that capture carbon in soil. (Full article...)

A runaway greenhouse effect will occur when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation which is asymptotically reached due to higher surface temperatures evaporating water into the atmosphere, increasing its optical depth. This positive feedback means the planet cannot cool down through longwave radiation (via the Stefan–Boltzmann law) and continues to heat up until it can radiate outside of the absorption bands of the water vapour.

The runaway greenhouse effect is often formulated with water vapour as the condensable species. The water vapour reaches the stratosphere and escapes into space via hydrodynamic escape, resulting in a desiccated planet. This likely happened in the early history of Venus.

Research in 2012 found that almost all lines of evidence indicate that it is unlikely to be possible to trigger a full runaway greenhouse on Earth, merely by adding greenhouse gases to the atmosphere. However, the authors cautioned that "our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak", and that we "cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one". (Full article...)
List of selected articles

Selected picture – show another

Credit: Robert A. Rohde
An image of the collapsing Larsen B Ice Shelf and a comparison of this to the U.S. state of Rhode Island.

WikiProjects

In the news

Selected biography – show another

Hansen in 2005
James Edward Hansen (born March 29, 1941) is an American adjunct professor directing the Program on Climate Science, Awareness and Solutions of the Earth Institute at Columbia University. He is best known for his research in climatology, his 1988 Congressional testimony on climate change that helped raise broad awareness of global warming, and his advocacy of action to avoid dangerous climate change. In recent years, he has become a climate activist to mitigate the effects of global warming, on a few occasions leading to his arrest. (Full article...)

General images

The following are images from various climate-related articles on Wikipedia.

Did you know – show another

... that Mars' south polar ice cap may be melting due to global warming?

(Pictured left: Photo of Mars' south polar ice taken by Mars Global Surveyor.)

Other "Did you know" facts...

Related portals

Selected panorama – show another

The effective rate of change in glacier thickness, also known as the glaciological mass balance, is a measure of the average change in a glacier's thickness after correcting for changes in density associated with the compaction of snow and conversion to ice. The map shows the average annual rate of thinning since 1970 for the 173 glaciers that have been measured at least 5 times between 1970 and 2004. Larger changes are plotted as larger circles and towards the back.

All survey regions except Scandinavia show a net thinning. This widespread glacier retreat is generally regarded as a sign of global warming.

During this period, 83% of surveyed glaciers showed thinning with an average loss across all glaciers of 0.31 m/yr. The most rapidly growing glacier in the sample is Engabreen glacier in Norway with a thickening of 0.64 m/yr. The most rapidly shrinking was Ivory glacier in New Zealand which was thinning at 2.4 m/yr. Ivory glacier had totally disintegrated by circa 1988. [1]

Topics


Categories

Web resources


Things to do

Wikimedia

References

  1. ^ "GISS Surface Temperature Analysis (v4)". NASA. Retrieved 12 January 2024.
  2. ^ Bhargav, Vishal (2021-10-11). "Climate Change Is Making India's Monsoon More Erratic". www.indiaspend.com. Retrieved 2021-10-11.
  3. ^ Tiwari, Dr Pushp Raj; Conversation, The. "Nobel prize: Why climate modellers deserved the physics award – they've been proved right again and again". phys.org. Retrieved 2021-10-11.
Discover Wikipedia using portals

Purge server cache