Anseriformes

From Wikipedia, the free encyclopedia

Anseriformes
Temporal range: Possible Cretaceous record
Paleogene-Holocene, 54–0 Ma [1]
Magpie goose, Anseranas semipalmata
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Clade: Anserimorphae
Order: Anseriformes
Wagler, 1831
Extant families
Range of the waterfowl and allies

Anseriformes is an order of birds also known as waterfowl that comprises about 180 living species of birds in three families: Anhimidae (three species of screamers), Anseranatidae (the magpie goose), and Anatidae, the largest family, which includes over 170 species of waterfowl, among them the ducks, geese, and swans. Most modern species in the order are highly adapted for an aquatic existence at the water surface. With the exception of screamers, males have penises, a trait that has been lost in the Neoaves. Due to their aquatic nature, most species are web-footed though this one is not.

Evolution[edit]

Anseriformes are one of only two types of modern bird to be confirmed present during the Mesozoic alongside the other dinosaurs, and in fact were among the very few birds to survive their extinction, along with their cousins the galliformes. These two groups only occupied two ecological niches during the Mesozoic, living in water and on the ground, while the toothed enantiornithes were the dominant birds that ruled the trees and air. The asteroid that ended the Mesozoic destroyed all trees as well as animals in the open, a condition that took centuries[citation needed] to recover from. The anseriformes and galliformes are thought to have survived in the cover of burrows and water, and not to have needed trees for food and reproduction.[2]

The earliest Cretaceous anseriform found so far is Vegavis, a goose-like waterfowl thought to have lived as long as 66 million years ago.[3] Some members apparently surviving the KT extinction event, including presbyornithids, thought to be the common ancestors of ducks, geese, swans, and screamers, the last group once thought to be galliformes, but now genetically confirmed to be closely related to geese. The first known duck fossils start to appear about 34 million years ago.

Waterfowl are the best-known examples of sexually antagonistic genital coevolution in vertebrates, causing genital adaptations to coevolve in each sex to advance control over mating and fertilization. Sexually antagonistic coevolution (or SAC) occurs as a consequence of sexual conflict between males and females, resulting in coevolutionary process that reduce fit, or that functions to decrease ease of having sex.[4]

Taxonomy[edit]

The Anseriformes and the Galliformes (pheasants, etc.) belong to a common group, the Galloanserae. They are the most primitive neognathous birds, and as such they should follow the palaeognathae (ratites and tinamous) in bird classification systems. Several unusual extinct families of birds like the albatross-like pseudotooth birds and the giant flightless gastornithids and mihirungs have been found to be stem-anseriforms based on common features found in the skull region, beak physiology and pelvic region.[5][6][7][8][9][10] The genus Vegavis for a while was found to be the earliest member of the anseriform crown group but a recent 2017 paper has found it to be just outside the crown group in the family Vegaviidae.[11]

Below is the general consensus of the phylogeny of anseriforms and their stem relatives.[5][6][7][8][9][11]

Odontoanserae

Pelagornithidae (pseudo-tooth birds)

Anserimorphae

Gastornithidae

Dromornithidae (mihirungs)

Vegaviidae

Anseriformes (screamers and waterfowl)

Systematics[edit]

Anatidae systematics, especially regarding placement of some "odd" genera in the dabbling ducks or shelducks, is not fully resolved. See the Anatidae article for more information, and for alternate taxonomic approaches. Anatidae is traditionally divided into subfamilies Anatinae and Anserinae.[12] The Anatinae consists of tribes Anatini, Aythyini, Mergini and Tadornini. The higher-order classification below follows a phylogenetic analysis performed by Mikko's Phylogeny Archive[13][14] and John Boyd's website.[15]

Some fossil anseriform taxa not assignable with certainty to a family are:

Unassigned Anatidae:

In addition, a considerable number of mainly Late Cretaceous and Paleogene fossils have been described where it is uncertain whether or not they are anseriforms. This is because almost all orders of aquatic birds living today either originated or underwent a major radiation during that time, making it hard to decide whether some waterbird-like bone belongs into this family or is the product of parallel evolution in a different lineage due to adaptive pressures.

  • "Presbyornithidae" gen. et sp. indet. (Barun Goyot Late Cretaceous of Udan Sayr, Mongolia) – Presbyornithidae?
  • UCMP 117599 (Hell Creek Late Cretaceous of Bug Creek West, USA)
  • Petropluvialis (Late Eocene of England) – may be same as Palaeopapia
  • Agnopterus (Late Eocene – Late Oligocene of Europe) – includes Cygnopterus lambrechti
  • "Headonornis hantoniensis" BMNH PAL 4989 (Hampstead Early Oligocene of Isle of Wight, England) – formerly "Ptenornis"
  • Palaeopapia (Hampstead Early Oligocene of Isle of Wight, England)
  • "Anas" creccoides (Early/Middle Oligocene of Belgium)
  • "Anas" skalicensis (Early Miocene of "Skalitz", Czech Republic)
  • "Anas" risgoviensis (Late Miocene of Bavaria, Germany)
  • "Anas" meyerii Milne-Edwards 1867 [Aythya meyerii (Milne-Edwards 1867) Brodkorb 1964]
  • Eonessa anaticula Wetmore 1938 {Eonessinae Wetmore 1938}

Phylogeny[edit]

Living Anseriformes based on the work by John Boyd.[15]

Anseriformes classification

Molecular studies[edit]

Studies of the mitochondrial DNA suggest the existence of four branches – Anseranatidae, Dendrocygninae, Anserinae and Anatinae – with Dendrocygninae being a subfamily within the family Anatidae and Anseranatidae representing an independent family.[17] The clade Somaterini has a single genus Somateria.

See also[edit]

References[edit]

  1. ^ Kuhl., H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S. T.; Klages, S.; Timmermann, B.; Gahr, M. (2020). "An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life". Molecular Biology and Evolution. 38: 108–127. doi:10.1093/molbev/msaa191. PMC 7783168. PMID 32781465.
  2. ^ Quail-like creatures were the only birds to survive the dinosaur-killing asteroid impact
  3. ^ The Delaware River: History, Traditions and Legends
  4. ^ Brennan, Patricia L.R.; Prum, Richard O. (July 2015). "Mechanisms and Evidence of Genital Coevolution: The Roles of Natural Selection, Mate Choice, and Sexual Conflict". Cold Spring Harbor Perspectives in Biology. 7 (7): a017749. doi:10.1101/cshperspect.a017749. ISSN 1943-0264. PMC 4484975. PMID 26134314.
  5. ^ a b Andors, A. (1992). "Reappraisal of the Eocene groundbird Diatryma (Aves: Anserimorphae)". Science Series Natural History Museum of Los Angeles County. 36: 109–125.
  6. ^ a b Murrary, P.F; Vickers-Rich, P. (2004). Magnificent Mihirungs: The Colossal Flightless Birds of the Australian Dreamtime. Indiana University Press.
  7. ^ a b Bourdon, E. (2005). "Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes)". Naturwissenschaften. 92 (12): 586–91. Bibcode:2005NW.....92..586B. doi:10.1007/s00114-005-0047-0. PMID 16240103. S2CID 9453177.
  8. ^ a b Agnolín, F. (2007). "Brontornis burmeisteri Moreno & Mercerat, un Anseriformes (Aves) gigante del Mioceno Medio de Patagonia, Argentina". Revista del Museo Argentino de Ciencias Naturales. 9: 15–25. doi:10.22179/revmacn.9.361.
  9. ^ a b Livezey, B.C.; Zusi, R.L. (2007). "Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion". The Science of Nature. 149 (1): 1–95. doi:10.1111/j.1096-3642.2006.00293.x. PMC 2517308. PMID 18784798.
  10. ^ Louchart, A.; Sire, J.-Y.; Mourer-Chauviré, C.; Geraads, D.; Viriot, L.; de Buffrénil, V. (2013). "Structure and Growth Pattern of Pseudoteeth in Pelagornis mauretanicus (Aves, Odontopterygiformes, Pelagornithidae)". PLOS ONE. 8 (11): e80372. Bibcode:2013PLoSO...880372L. doi:10.1371/journal.pone.0080372. PMC 3828250. PMID 24244680.
  11. ^ a b Agnolín, F.L.; Egli, F.B.; Chatterjee, S.; Marsà, J.A.G (2017). "Vegaviidae, a new clade of southern diving birds that survived the K/T boundary". The Science of Nature. 104 (87): 87. Bibcode:2017SciNa.104...87A. doi:10.1007/s00114-017-1508-y. PMID 28988276. S2CID 13246547.
  12. ^ Gonzalez, J.; Düttmann, H.; Wink, M. (2009). "Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae". Journal of Zoology. 279 (3): 310–318. doi:10.1111/j.1469-7998.2009.00622.x.
  13. ^ Mikko's Phylogeny Archive [1] Haaramo, Mikko (2007). "Anseriformes – waterfowls". Retrieved 30 December 2015.
  14. ^ Paleofile.com (net, info) "Paleofile.com". Archived from the original on 2016-01-11. Retrieved 2015-12-30.. "Taxonomic lists- Aves". Archived from the original on 11 January 2016. Retrieved 30 December 2015.
  15. ^ a b John Boyd's website [2] Boyd, John (2007). "Anseriformes – waterfowl". Retrieved 30 December 2015.
  16. ^ Houde, Peter; Dickson, Meig; Camarena, Dakota (February 2023). "Basal Anseriformes from the Early Paleogene of North America and Europe". Diversity. 15 (2): 233. doi:10.3390/d15020233. ISSN 1424-2818.
  17. ^ Liu, G; Zhou, L; Zhang, L; Luo, Z; Xu, W (2013). "The complete mitochondrial genome of bean goose (Anser fabalis) and implications for anseriformes taxonomy". PLOS ONE. 8 (5): e63334. Bibcode:2013PLoSO...863334L. doi:10.1371/journal.pone.0063334. PMC 3662773. PMID 23717412.

Cited texts[edit]